

 Please enable JavaScript

 GoCardless requires your browser to have JavaScript enabled.
 Learn more

 	

 Getting Started

	

 API Reference

	

 Billing Requests

	

 Create a sandbox account

	
 Overview
 	
 Supported Direct Debit Schemes

	
 Getting Started

	
 Restrictions
 	
 Payment page restrictions

	
 Creditor management restrictions

	
 Anatomy
 	
 Mandate setup

	
 Payment creation

	
 How timings work

	
 Backwards Compatibility

	
 Changelog

	
 Client Libraries

	
 API Usage
 	
 Making Requests
 	
 Base URLs

	
 Authentication

	
 Versions

	
 MIME Types

	
 PUT, PATCH and DELETE

	
 Rate Limiting

	
 Timeouts

	
 Idempotency Keys

	
 Optional properties

	
 Dates and Times

	
 Cursor Pagination
 	
 Options

	
 Response

	
 Response Codes

	
 Scenario Simulators

	
 Errors
 	
 Error types

	
 GoCardless errors

	
 Invalid API usage errors

	
 Invalid state errors

	
 Validation errors

	
 Billing Requests
 	
 Bank Authorisations
 	
 Create a Bank Authorisation

	
 Get a Bank Authorisation

	
 Billing Requests
 	
 Create a Billing Request

	
 Collect customer details

	
 Collect bank account details

	
 Confirm the payer details

	
 Fulfil a Billing Request

	
 Cancel a Billing Request

	
 List Billing Requests

	
 Get a single Billing Request

	
 Notify the customer

	
 Trigger fallback

	
 Change currency

	
 Select institution for a Billing Request

	
 Billing Request Flows
 	
 Create a Billing Request Flow

	
 Initialise a Billing Request Flow

	
 Billing Request Templates
 	
 List Billing Request Templates

	
 Get a single Billing Request Template

	
 Create a Billing Request Template

	
 Update a Billing Request Template

	
 Institutions
 	
 List Institutions

	
 List institutions for Billing Request

	
 Core Endpoints
 	
 Blocks
 	
 Create a block

	
 Get a single block

	
 List multiple blocks

	
 Disable a block

	
 Enable a block

	
 Create blocks by reference

	
 Creditors
 	
 Create a creditor

	
 List creditors

	
 Get a single creditor

	
 Update a creditor

	
 Creditor Bank Accounts
 	
 Create a creditor bank account

	
 List creditor bank accounts

	
 Get a single creditor bank account

	
 Disable a creditor bank account

	
 Currency Exchange Rates
 	
 List exchange rates

	
 Customers
 	
 Create a customer

	
 List customers

	
 Get a single customer

	
 Update a customer

	
 Remove a customer

	
 Customer Bank Accounts
 	
 Create a customer bank account

	
 List customer bank accounts

	
 Get a single customer bank account

	
 Update a customer bank account

	
 Disable a customer bank account

	
 Customer Notifications
 	
 Handle a notification

	
 Events
 	
 List events

	
 Get a single event

	
 Reconciling Payouts with Events

	
 Instalment Schedules
 	
 Create (with dates)

	
 Create (with schedule)

	
 List instalment schedules

	
 Get a single instalment schedule

	
 Update an instalment schedule

	
 Cancel an instalment schedule

	
 Mandates
 	
 Create a mandate

	
 List mandates

	
 Get a single mandate

	
 Update a mandate

	
 Cancel a mandate

	
 Reinstate a mandate

	
 Mandate Imports
 	
 Create a new mandate import

	
 Get a mandate import

	
 Submit a mandate import

	
 Cancel a mandate import

	
 Mandate Import Entries
 	
 Add a mandate import entry

	
 List all mandate import entries

	
 Negative Balance Limits
 	
 List negative balance limits

	
 Create a negative balance limit

	
 Payer Authorisations
 	
 Get a single Payer Authorisation

	
 Create a Payer Authorisation

	
 Update a Payer Authorisation

	
 Submit a Payer Authorisation

	
 Confirm a Payer Authorisation

	
 Payments
 	
 Create a payment

	
 List payments

	
 Get a single payment

	
 Update a payment

	
 Cancel a payment

	
 Retry a payment

	
 Payouts
 	
 List payouts

	
 Get a single payout

	
 Update a payout

	
 Payout Items
 	
 Get all payout items in a single payout

	
 Redirect Flows
 	
 Create a redirect flow

	
 Get a single redirect flow

	
 Complete a redirect flow

	
 Refunds
 	
 Create a refund

	
 List refunds

	
 Get a single refund

	
 Update a refund

	
 Scenario Simulators
 	
 Simulate a scenario

	
 Scheme Identifiers
 	
 Create a scheme identifier

	
 List scheme identifiers

	
 Get a single scheme identifier

	
 Subscriptions
 	
 Recurrence Rules

	
 Rolling dates

	
 Create a subscription

	
 List subscriptions

	
 Get a single subscription

	
 Update a subscription

	
 Pause a subscription

	
 Resume a subscription

	
 Cancel a subscription

	
 Tax Rates
 	
 List tax rates

	
 Get a single tax rate

	
 Transferred Mandates
 	
 Get updated customer bank details

	
 Verification Details
 	
 Create a verification detail

	
 List verification details

	
 Webhooks
 	
 List webhooks

	
 Get a single webhook

	
 Retry a webhook

	
 Event Actions
 	
 Billing Request
 	
 created

	
 flow_created

	
 flow_visited

	
 flow_exited

	
 collect_customer_details

	
 select_institution

	
 collect_bank_account

	
 payer_details_confirmed

	
 bank_authorisation_visited

	
 bank_authorisation_authorised

	
 bank_authorisation_denied

	
 bank_authorisation_expired

	
 bank_authorisation_failed

	
 fulfilled

	
 cancelled

	
 choose_currency

	
 collect_amount

	
 payer_geo_blocked

	
 Creditor
 	
 updated

	
 new_payout_currency_added

	
 account_auto_frozen

	
 account_auto_frozen_reverted

	
 bounced_payout

	
 Instalment Schedule
 	
 created

	
 creation_failed

	
 cancelled

	
 errored

	
 resumed

	
 completed

	
 Mandate
 	
 created

	
 customer_approval_granted

	
 customer_approval_skipped

	
 active

	
 cancelled

	
 failed

	
 transferred

	
 expired

	
 submitted

	
 resubmission_requested

	
 reinstated

	
 replaced

	
 consumed

	
 blocked

	
 Payer Authorisation
 	
 completed

	
 failed

	
 Payment
 	
 created

	
 customer_approval_granted

	
 customer_approval_denied

	
 submitted

	
 confirmed

	
 chargeback_cancelled

	
 paid_out

	
 late_failure_settled

	
 chargeback_settled

	
 surcharge_fee_debited

	
 failed

	
 charged_back

	
 cancelled

	
 resubmission_requested

	
 Payout
 	
 paid

	
 fx_rate_confirmed

	
 tax_exchange_rates_confirmed

	
 Refund
 	
 created

	
 failed

	
 paid

	
 refund_settled

	
 funds_returned

	
 Scheme Identifier
 	
 activated

	
 Subscription
 	
 created

	
 customer_approval_granted

	
 customer_approval_denied

	
 amended

	
 payment_created

	
 cancelled

	
 finished

	
 paused

	
 resumed

	
 Success+
 	
 Intelligent Retries

	
 Enabling Intelligent Retries
 	
 Individual Payments

	
 Instalment Schedules

	
 Subscriptions

	
 Handling Failures

	
 Retry Rules

	
 Helper Endpoints
 	
 Healthcheck

	
 Bank Details Lookups
 	
 Perform a bank details lookup

	
 Mandate PDFs
 	
 Create a mandate PDF

	
 Appendix
 	
 Webhooks
 	
 Overview

	
 Signing Webhooks

	
 Examples

	
 JavaScript Flow
 	
 Customer Bank Account Tokens

	
 Create a customer bank account token

	
 Intercepting form submission with the JavaScript library

	
 Get a single customer bank account token

	
 OAuth
 	
 The OAuth flow

	
 Creating an OAuth app

	
 Building an authorisation link

	
 Handling the redirect back to you

	
 Exchanging an authorisation code for an access token

	
 Making requests

	
 Receiving webhooks

	
 App Fees

	
 Looking up an access token

	
 Disconnecting a user from your app

	
 Compliance Requirements

	
 Local Bank Details
 	
 IBAN

	
 UK

	
 Australia

	
 Austria

	
 Belgium

	
 Canada

	
 Cyprus

	
 Denmark

	
 Estonia

	
 Finland

	
 France

	
 Germany

	
 Greece

	
 Ireland

	
 Italy

	
 Latvia

	
 Lithuania

	
 Luxembourg

	
 Malta

	
 Monaco

	
 Netherlands

	
 New Zealand

	
 Portugal

	
 San Marino

	
 Slovak Republic

	
 Slovenia

	
 Spain

	
 Sweden

	
 United States

	
 Character Sets

	
 Public Certificate Policy

	
 Approving our IP Addresses
 	
 Alternative to IP approved lists

	
 Tax Rates
 	
 Who does this impact?

	
 Best practices for integrating

	
 Definitions of jurisdiction

	
 Tax Tables

 Getting Started
 API Reference
 Billing Requests

 Guides

 Partner Guide
 Embed Guide
 CLI Reference

 Create a sandbox account

 	

 Getting Started

	

 API Reference

	

 Billing Requests

	

 Create a sandbox account

	
 Overview
 	
 Supported Direct Debit Schemes

	
 Getting Started

	
 Restrictions
 	
 Payment page restrictions

	
 Creditor management restrictions

	
 Anatomy
 	
 Mandate setup

	
 Payment creation

	
 How timings work

	
 Backwards Compatibility

	
 Changelog

	
 Client Libraries

	
 API Usage
 	
 Making Requests
 	
 Base URLs

	
 Authentication

	
 Versions

	
 MIME Types

	
 PUT, PATCH and DELETE

	
 Rate Limiting

	
 Timeouts

	
 Idempotency Keys

	
 Optional properties

	
 Dates and Times

	
 Cursor Pagination
 	
 Options

	
 Response

	
 Response Codes

	
 Scenario Simulators

	
 Errors
 	
 Error types

	
 GoCardless errors

	
 Invalid API usage errors

	
 Invalid state errors

	
 Validation errors

	
 Billing Requests
 	
 Bank Authorisations
 	
 Create a Bank Authorisation

	
 Get a Bank Authorisation

	
 Billing Requests
 	
 Create a Billing Request

	
 Collect customer details

	
 Collect bank account details

	
 Confirm the payer details

	
 Fulfil a Billing Request

	
 Cancel a Billing Request

	
 List Billing Requests

	
 Get a single Billing Request

	
 Notify the customer

	
 Trigger fallback

	
 Change currency

	
 Select institution for a Billing Request

	
 Billing Request Flows
 	
 Create a Billing Request Flow

	
 Initialise a Billing Request Flow

	
 Billing Request Templates
 	
 List Billing Request Templates

	
 Get a single Billing Request Template

	
 Create a Billing Request Template

	
 Update a Billing Request Template

	
 Institutions
 	
 List Institutions

	
 List institutions for Billing Request

	
 Core Endpoints
 	
 Blocks
 	
 Create a block

	
 Get a single block

	
 List multiple blocks

	
 Disable a block

	
 Enable a block

	
 Create blocks by reference

	
 Creditors
 	
 Create a creditor

	
 List creditors

	
 Get a single creditor

	
 Update a creditor

	
 Creditor Bank Accounts
 	
 Create a creditor bank account

	
 List creditor bank accounts

	
 Get a single creditor bank account

	
 Disable a creditor bank account

	
 Currency Exchange Rates
 	
 List exchange rates

	
 Customers
 	
 Create a customer

	
 List customers

	
 Get a single customer

	
 Update a customer

	
 Remove a customer

	
 Customer Bank Accounts
 	
 Create a customer bank account

	
 List customer bank accounts

	
 Get a single customer bank account

	
 Update a customer bank account

	
 Disable a customer bank account

	
 Customer Notifications
 	
 Handle a notification

	
 Events
 	
 List events

	
 Get a single event

	
 Reconciling Payouts with Events

	
 Instalment Schedules
 	
 Create (with dates)

	
 Create (with schedule)

	
 List instalment schedules

	
 Get a single instalment schedule

	
 Update an instalment schedule

	
 Cancel an instalment schedule

	
 Mandates
 	
 Create a mandate

	
 List mandates

	
 Get a single mandate

	
 Update a mandate

	
 Cancel a mandate

	
 Reinstate a mandate

	
 Mandate Imports
 	
 Create a new mandate import

	
 Get a mandate import

	
 Submit a mandate import

	
 Cancel a mandate import

	
 Mandate Import Entries
 	
 Add a mandate import entry

	
 List all mandate import entries

	
 Negative Balance Limits
 	
 List negative balance limits

	
 Create a negative balance limit

	
 Payer Authorisations
 	
 Get a single Payer Authorisation

	
 Create a Payer Authorisation

	
 Update a Payer Authorisation

	
 Submit a Payer Authorisation

	
 Confirm a Payer Authorisation

	
 Payments
 	
 Create a payment

	
 List payments

	
 Get a single payment

	
 Update a payment

	
 Cancel a payment

	
 Retry a payment

	
 Payouts
 	
 List payouts

	
 Get a single payout

	
 Update a payout

	
 Payout Items
 	
 Get all payout items in a single payout

	
 Redirect Flows
 	
 Create a redirect flow

	
 Get a single redirect flow

	
 Complete a redirect flow

	
 Refunds
 	
 Create a refund

	
 List refunds

	
 Get a single refund

	
 Update a refund

	
 Scenario Simulators
 	
 Simulate a scenario

	
 Scheme Identifiers
 	
 Create a scheme identifier

	
 List scheme identifiers

	
 Get a single scheme identifier

	
 Subscriptions
 	
 Recurrence Rules

	
 Rolling dates

	
 Create a subscription

	
 List subscriptions

	
 Get a single subscription

	
 Update a subscription

	
 Pause a subscription

	
 Resume a subscription

	
 Cancel a subscription

	
 Tax Rates
 	
 List tax rates

	
 Get a single tax rate

	
 Transferred Mandates
 	
 Get updated customer bank details

	
 Verification Details
 	
 Create a verification detail

	
 List verification details

	
 Webhooks
 	
 List webhooks

	
 Get a single webhook

	
 Retry a webhook

	
 Event Actions
 	
 Billing Request
 	
 created

	
 flow_created

	
 flow_visited

	
 flow_exited

	
 collect_customer_details

	
 select_institution

	
 collect_bank_account

	
 payer_details_confirmed

	
 bank_authorisation_visited

	
 bank_authorisation_authorised

	
 bank_authorisation_denied

	
 bank_authorisation_expired

	
 bank_authorisation_failed

	
 fulfilled

	
 cancelled

	
 choose_currency

	
 collect_amount

	
 payer_geo_blocked

	
 Creditor
 	
 updated

	
 new_payout_currency_added

	
 account_auto_frozen

	
 account_auto_frozen_reverted

	
 bounced_payout

	
 Instalment Schedule
 	
 created

	
 creation_failed

	
 cancelled

	
 errored

	
 resumed

	
 completed

	
 Mandate
 	
 created

	
 customer_approval_granted

	
 customer_approval_skipped

	
 active

	
 cancelled

	
 failed

	
 transferred

	
 expired

	
 submitted

	
 resubmission_requested

	
 reinstated

	
 replaced

	
 consumed

	
 blocked

	
 Payer Authorisation
 	
 completed

	
 failed

	
 Payment
 	
 created

	
 customer_approval_granted

	
 customer_approval_denied

	
 submitted

	
 confirmed

	
 chargeback_cancelled

	
 paid_out

	
 late_failure_settled

	
 chargeback_settled

	
 surcharge_fee_debited

	
 failed

	
 charged_back

	
 cancelled

	
 resubmission_requested

	
 Payout
 	
 paid

	
 fx_rate_confirmed

	
 tax_exchange_rates_confirmed

	
 Refund
 	
 created

	
 failed

	
 paid

	
 refund_settled

	
 funds_returned

	
 Scheme Identifier
 	
 activated

	
 Subscription
 	
 created

	
 customer_approval_granted

	
 customer_approval_denied

	
 amended

	
 payment_created

	
 cancelled

	
 finished

	
 paused

	
 resumed

	
 Success+
 	
 Intelligent Retries

	
 Enabling Intelligent Retries
 	
 Individual Payments

	
 Instalment Schedules

	
 Subscriptions

	
 Handling Failures

	
 Retry Rules

	
 Helper Endpoints
 	
 Healthcheck

	
 Bank Details Lookups
 	
 Perform a bank details lookup

	
 Mandate PDFs
 	
 Create a mandate PDF

	
 Appendix
 	
 Webhooks
 	
 Overview

	
 Signing Webhooks

	
 Examples

	
 JavaScript Flow
 	
 Customer Bank Account Tokens

	
 Create a customer bank account token

	
 Intercepting form submission with the JavaScript library

	
 Get a single customer bank account token

	
 OAuth
 	
 The OAuth flow

	
 Creating an OAuth app

	
 Building an authorisation link

	
 Handling the redirect back to you

	
 Exchanging an authorisation code for an access token

	
 Making requests

	
 Receiving webhooks

	
 App Fees

	
 Looking up an access token

	
 Disconnecting a user from your app

	
 Compliance Requirements

	
 Local Bank Details
 	
 IBAN

	
 UK

	
 Australia

	
 Austria

	
 Belgium

	
 Canada

	
 Cyprus

	
 Denmark

	
 Estonia

	
 Finland

	
 France

	
 Germany

	
 Greece

	
 Ireland

	
 Italy

	
 Latvia

	
 Lithuania

	
 Luxembourg

	
 Malta

	
 Monaco

	
 Netherlands

	
 New Zealand

	
 Portugal

	
 San Marino

	
 Slovak Republic

	
 Slovenia

	
 Spain

	
 Sweden

	
 United States

	
 Character Sets

	
 Public Certificate Policy

	
 Approving our IP Addresses
 	
 Alternative to IP approved lists

	
 Tax Rates
 	
 Who does this impact?

	
 Best practices for integrating

	
 Definitions of jurisdiction

	
 Tax Tables

 API reference

 Overview

 This is the documentation for the GoCardless API.

 If you’re just exploring or want to start building an integration, check out our getting started guide for a step-by-step introduction with PHP, .NET, Java, Ruby and Python code samples

For testing purposes we recommend you
sign up for a sandbox account.

 Supported Direct Debit Schemes

The GoCardless API currently supports the following Direct Debit schemes:

	Scheme	Countries
	Bacs	UK & Channel Islands (inc. Jersey & Guernsey) + Isle of Man + Gibraltar (The customer needs to select UK as the country)
	SEPA Core*	

 Åland Islands

 Austria

 Belgium

 Cyprus

 Estonia

 Finland

 France

 French Guiana

 Germany

 Greece

 Guadeloupe

 Ireland

 Italy

 Latvia

 Lithuania

 Luxembourg

 Malta

 Martinique

 Mayotte

 Monaco

 Netherlands

 Portugal

 Réunion

 San Marino

 Slovakia

 Slovenia

 Spain

 Saint Barthélemy

 Saint Martin

 Saint Pierre and Miquelon

	ACH	United States
	Autogiro	

 Sweden

	Betalingsservice	

 Denmark

	BECS	

 Australia

	BECS NZ	

 New Zealand

	PAD	

 Canada

	PayTo**	

 Australia

	Faster Payments***	UK & Channel Islands (inc. Jersey & Guernsey) + Isle of Man + Gibraltar (The customer needs to select UK as the country)

 Note: There are practical issues with SEPA Direct Debit in some countries that mean we would not recommend using it to collect payments from end customers in those markets. Local implementation can cause problems in the Baltic states in particular - please contact us for more information.

* Collection from all non-Eurozone SEPA countries is also supported through the
API, but since only a small percentage of bank accounts in these countries are
reachable they have not been listed above.

** PayTo although not technically a Direct Debit scheme can be used as an alternative to BECS.

*** Faster Payments is not a Direct Debit scheme, but an alternative to BACS that can be used for instant and variable recurring payments.

 Getting Started

There are three key parts to an integration with the API - you can do one, two or all three of them:

	Setting up mandates with your customers’ bank accounts
	Collecting payments against your mandates
	Staying up-to-date with webhooks

To get started with the API, check out our “getting started” guide, with copy and paste code samples in PHP, Ruby and Python guiding you through your integration from start to finish.

 Restrictions

Whilst the entire GoCardless API is accessible in the sandbox environment, the
following restrictions exist in live.

Payment page restrictions

Unless your payment pages have been approved as
scheme rules compliant by our sponsor bank
you must use the Billing Requests API
to create customers, bank accounts and mandates.

The following endpoints are therefore restricted:

	
Billing Requests: Create_customer_details, Collect_bank_account
	
Customers: Create
	
Customer bank accounts: Create
	
Mandate: Create, Reinstate
	
Javascript flow: All endpoints

Please get in touch
to discuss having your payment pages approved.

Creditor management restrictions

Unless your account has previously been approved as a whitelabel partner you may only
collect payments on behalf of a single creditor. The following endpoints are
therefore restricted:

	
Creditors: Create

 Anatomy

The following state diagrams explain the flows of mandate setup to setup customers on a Direct Debit and payment creation, to collect payment against said mandate. There’s also a short section on how timings work.

Mandate setup

Payment creation

How timings work

Direct debit payments don’t process instantly, and work differently to card payments.

For the UK:

	If a Direct Debit mandate is already in place, payment is collected 2
working days after submission, can be considered 95% confirmed 3 working
days after submission, and 100% confirmed after 4 working days.
	If a Direct Debit mandate needs to be created, payment is collected 4
working days after submission, can be considered 95% confirmed 5 working
days after submission, and 100% confirmed after 6 working days.

There’s also a requirement to notify your customers 3 working days before payment
leaves their account. See the
notifications section
for more detail.

For more information on UK timings, see our
detailed guide.

For ACH:

	New mandates take up to 2 interbank business days before payments can be submitted under
them.
	For all payment collections, you must submit the collection to the banks 2 interbank
business days before the payment due date.

You will need to notify your customers at least 2 working days in advance of the payment
being collected.

For more information on ACH timings, see our detailed guide.

For Autogiro:

	New mandates take up to 6 interbank business days before payments can be submitted under
them.
	For all payment collections, you must submit the collection to the banks 2 interbank
business days before the payment due date.

You will need to notify your customers at least 8 working days in advance of the payment
being collected.

For more information on Autogiro timings, see our detailed guide.

For BECS:

	For all payment collections, you must submit the collection to the banks
1 interbank business day before the payment due date.

For more information on BECS timings, see our detailed guide.

For BECS NZ:

	For all payment collections, you must submit the collection to the banks
2 interbank business days before the payment due date.

For more information on BECS NZ timings, see our detailed guide.

For Betalingsservice:

	New mandates must be created at least one working day before payments can be created.
	For all payment collections, you must submit the collection 8 working days before the
end of the month preceding the month in which you wish to take the payment

For more information on Betalingsservice timings, see our detailed guide.

For PAD:

	For all payment collections, you must submit the collection to the banks
3 interbank business days before the payment due date.

For more information on PAD timings, see our detailed guide.

For PayTo:

	There is no advance notice period and payments can be taken almost instantaneously.

For Faster Payments:

	There is no advance notice period and payments can be taken almost instantaneously.

For SEPA Core:

	For all payment collections, you must submit the collection to the banks
3 interbank business days before the payment due date.

You will need to notify your customers 3 working days in advance of
the payment being collected.

For more information on SEPA timings, see our detailed guide.

In all cases, you can still test these as if they were instant - for more detail,
see the section on testing your integration.

 Backwards Compatibility

The following changes are considered backwards compatible:

	Adding new API endpoints
	Adding new properties to the responses from existing API endpoints
	Reordering properties returned from existing API endpoints
	Adding optional request parameters to existing API endpoints
	Altering the format or length of IDs
 	These strings will never exceed 255 characters, but you should be able to
handle anything up to that length

	Altering the message attributes returned by validation failures / other
errors
	The number of and duration between retries for failed webhooks

	The behaviour of Scenario Simulators

	Sending webhooks for new event types

Changelog

	8th January 2024
	Added API fields for Faster ACH:

 	Added payment[faster_ach] parameter to Payment creation.
	Added payment[faster_ach] response field to Payment responses.
	Added mandate[next_possible_standard_ach_charge_date] response field to Mandate responses.

	18th July 2023
	Updated our public certificate policy.
	21 June 2023
	Added the resource_metadata property to Events.
	16 March 2023
	Added show_success_redirect_button parameter to Billing Request Flow creation.
	1st March 2023
	Changed the Payout Items API to only return Payout Items created in the previous 6 months.
	22nd February 2023
	Made the Billing Requests API and the Blocks API respond in English if the Accept-Language header isn’t set, like other API endpoints. These two APIs used to infer the language from the IP address of the client, which wasn’t the intended behaviour.
	8th February 2023
	Added billing_request[purpose_code] parameter to Billing Request creation.
	13th January 2023
	Added the verified_at timestamp field to the mandates API.
	23rd December 2022
	Updated our public certificate policy.
	20th December 2022
	Added authorisation_source parameter to the Mandate creation API and mandate_request[authourisation_source] parameter to the BillingRequest creation API. This field is required for offline mandates.
	13th December 2022
	Added creditor_type parameter to the Creditors API. This field represents the type of business of the creditor. It will now be required when creating a creditor and it will be returned when fetching creditors.
	9th December 2022
	Added language parameter to Billing Request Flow creation.
	11th November 2022
	Added mandate_request[description] and mandate_request[constraints] parameter to Billing Request creation.
Constraints restricts the kind of payment that can be taken against a mandate.
	1st November 2022
	
Payout Items are no longer ordered by type. The order of Payout Items for a given Payout is still consistent between requests.
	5th August 2022
	Added payer_requested_dual_signature parameter to Billing Request action confirm payer details.
	21st July 2022
	Added prefilled_customer and prefilled_bank_account parameters to Billing Request creation.
	14th July 2022
	Added mandate_request[reference] parameter to Billing Request creation.
	10th May 2022
	Autogiro scheme is now available in Billing Request flow. Documentaion can be found here

	4th May 2022
	
Event creation is now an asynchronous process. This means it can take some time between an action occurring and its corresponding event being made available in API responses.
	26th January 2022
	Added support for filtering events by instalment schedule in the events List API.
	31st December 2021
	Added support for Sepa Credit Transfer and Sepa Instant Credit Transfer, the Instant Bank Pay schemes inside Billing Request.
	18th November 2021
	Added block endpoints. These endpoints allow to create a block based on payers bank_account, email and email_domain, view the blocked items.
	5th August 2021
	Fixed reason codes sent for BECS so that they are consistent with the documentation.
Eg. direct_debit_not_enabled events will be sent with Reason code 2 instead of RETURNS-2, as per documentation.
	30th March 2021
	Added Scenario Simulators endpoint.
These allow manual testing of certain flows in the Sandbox environment
	26th March 2021
	Added a new resource called Billing Requests. This is our new API dedicated to building custom payment pages. It encapsulates the creation of customer, bank account and mandate under this single resource.
	28th January 2021
	Added webhook endpoints. These allow you to view
and retry webhooks that we have sent to you. As part of this we began
including webhook_id inside the meta key in the webhooks we send.
	30th October 2020
	Added a new resource called payer_authorisatons. This is our new API dedicated to building custom payment pages. It encapsulates the creation of customer, bank account and mandate under this single resource.
	12th August 2020
	Added a new event called payer_authorisation_completed for an upcoming resource type called payer_authorisation.
	14th July 2020
	Added support for applying tax to transaction and surcharge fees.

 	Added taxes to payout_items.
	Added tax_currency to payout.
	Added tax_rates endpoint.
	Added a payout tax_exchange_rates_confirmed webhook to know when the exchange rate has been finalised for all fees in the payout.

	9th July 2020
	Allow changing retry_if_possible when updating a subscription.
	27th May 2020
	Added a not_retried_reason field to the event details for failed payment event.
	7th May 2020
	Updated the type of bank_account_type from string to enum. bank_account_type is referenced in creditor_bank_accounts, customer_bank_acount_tokens, customer_bank_accounts and
mandate_pdfs endpoint.
	20th April 2020
	Added prefilled_bank_account attribute in the redirect flow create endpoint to allow the integrator to prefill the account_type field.
	20th April 2020
	Added metadata to payouts, and added new update payouts route so that integrators can use it.
	6th April 2020
	We are updating the wording of the documentation for prefilled_customer[region] attribute in redirect flow create endpoint.
	26th March 2020
	We have added the ability to capture metadata attribute as part of redirect flow create endpoint.
	17th March 2020
	We’ve added the ability to pause and resume subscriptions.
	19th February 2020
	We’ve optimised our webhook batching to become slightly more effective. This means each webhook will have on–average–slightly more events per request than we have sent previously.
	18th Februrary 2020
	Added new events for creditors:

 	updated
	new_payout_currency_added

	6th February 2020
	Added support for Success+ intelligent retries

 	Added a new retry_if_possible field to the Payments, Subscriptions & Instalment Schedules endpoints
	Added a will_attempt_retry field to the event details for failed payment event.

	6th February 2020
	Added new disconnected webhook for partners
	29th January 2020
	Added 3 fields to the Creditors endpoint: mandate_imports_enabled, merchant_responsible_for_notifications and custom_payment_pages_enabled.
	28th January 2020
	Added support for instalment schedules.

 	Added documentation for new Instalment Schedules endpoint.

	27th January 2020
	Marked the phone_number field in Customers as optional.
	19th November 2019
	Added support for international payments.

 	Added fx to Payments, Payouts & Refunds

	Added support for surcharge fees.
	Added new surcharge_fee type for Payout Items.
	Added payment webhooks for surcharge fee events (surcharge_fee_credited and surcharge_fee_debited)

	23rd July 2019
	Added new customer removal API.
	21st February 2019
	Added new payment_autoretried event cause for the payment_resubmission_requested action.
	19th December 2018
	Added the ability to handle subscription_created emails.
	5th December 2018
	Added support for PAD, the Direct Debit scheme in Canada, in beta.
	16th October 2018
	Added new event for refund failed (refund_failed).
	11th September 2018
	Added support for BECS NZ, the Direct Debit scheme in New Zealand, in beta.
	30th August 2018
	Add links[default_aud_payout_account] as an updatable field to the creditors API
	22nd August 2018
	Removed can_create_refunds as an updatable field from the creditors API
	17th August 2018
	Added the ability to handle payment_created and mandate_created emails.
	12th July 2018
	Added customer address fields to the mandate PDFs API.
	27th June 2018
	Added support for Betalingsservice, the Direct Debit scheme in Denmark, in beta.
	22nd May 2018
	Added app_fee field to responses from the subscriptions API.
	17th May 2018
	Took the payout items API out of beta.
	Improved the documentation of the mandate PDFs API, clarifying what languages are supported for each scheme and documenting that the default language is English.
	15th May 2018
	Added the maximum payment and refund reference lengths for Becs.
	26th April 2018
	Added the mandate imports API, allowing partners to more easily migrate mandates to GoCardless.
	20th April 2018
	Added information on our public certificate policy.
	11th April 2018
	Added support for BECS, the Direct Debit scheme in Australia, in beta.
	6th March 2018
	Added contact email address to responses from the OAuth introspect API
and access token API.
	13th February 2018
	Added support for multiple redirect URIs per partner app.
	26th January 2018
	Added the new OAuth introspect API, allowing partners to check if access tokens are valid and find out more about them
	Added the new OAuth revoke API, allowing partners to disconnect users from their app, invaliding their access token
	15th January 2018
	Added additional characters to the list of allowed characters for SEPA mandate and payment references
	1st December 2017
	Added read-only can_create_refunds field to responses from the creditors API.
	30th November 2017
	Renamed exceeded_max_amendments error on subscriptions to number_of_subscription_amendments_exceeded when updating a subscription.
	16th November 2017
	Added filtering by reference to the payouts API.
	14th November 2017
	Added filtering by status to the subscriptions API.
	13th November 2017
	Added the new payout items API, allowing you to view, on a per-payout basis, the credit and debit items that make up that payout’s amount.
	25th October 2017
	Allow changing amount when updating a subscription.
	23rd October 2017
	Added new event for subscription amended action.
	18th September 2017
	Added confirmation_url to the redirect flows API.
	19th June 2017
	Added the Origin header to webhooks, specifying the GoCardless environment
that a webhook was sent from (https://api.gocardless.com for live,
https://api-sandbox.gocardless.com for sandbox).
	19th May 2017
	Added verification_status to the creditors API.
	11th May 2017
	Deprecated end_date in the subscriptions API.
	17th March 2017
	Added new mandate_expired cause for the payment cancelled action(#payment-cancelled).
	13th March 2017
	Added app_fee to the subscriptions API.
	2nd March 2017
	Added prefilled_customer to the redirect flows API.
	20th February 2017
	Added scheme_identifiers to the creditors API.
	2nd February 2017
	Added new event for mandate replaced action.
	2nd August 2016
	Added deducted_fees to the payouts API.
	7th July 2016
	Added payments_require_approval to the mandates API.
	11th February 2016
	Added arrival_date to the payouts API.
	21st January 2016
	Restricted specifying payment references on Bacs payments to only those organisations using their own Service User Number.
	6th January 2016
	Added filtering by created_at to the customer bank accounts API.
	20th October 2015
	Added filtering by created_at to the mandates API.
	16th October 2015
	Added filtering by created_at to the payouts API.
	30th September 2015
	Added support for app fees to the OAuth API, in beta.
	29th September 2015
	Added support for Autogiro, the Direct Debit scheme in Sweden, in beta.
	16th September 2015
	Added request_pointer field to validation errors, in the form of JSON
pointer. See validation
errors for more details.
	10th September 2015
	Added reference to the refund API.
This sets a reference which will appear with the refund on the customer’s bank
statement.
	17th August 2015
	Added language to the customer API.
This sets the language of notification emails sent by GoCardless to
the customer. Defaults to the native language of the customer’s
country.
	2nd August 2015
	Added support for SEPA COR1, a faster version of SEPA Direct Debit
available in Spain, Germany and Austria. COR1 will be used
automatically if possible when creating new SEPA mandates, unless
you specify the scheme attribute explicitly. The returned scheme
attribute will be sepa_cor1.
	29th July 2015
	Added customer_bank_account and customer to the complete redirect flow
endpoint returned properties.
	23rd July 2015
	Removed support for API version 2014-11-03.
	22nd July 2015
	Added bic to the bank details lookups endpoint returned properties.
	6th July 2015
	Released API version 2015-07-06. See blog post for more details and upgrade guide.

 	Removes Helpers endpoint from the API
	Renames start_at and end_at on subscriptions to start_date and end_date

	Enforces date format (not datetime) for payment charge_date

	2nd July 2015
	Renamed the beta modulus checks endpoint to bank details lookups and took it out of beta.
	30th June 2015
	Added mandate PDFs endpoint, which will replace the previous mandate helper endpoint and the ability to request a PDF from the “get a single mandate” endpoint in a future version.
	26th June 2015
	Added top level modulus checks endpoint, which will replace the previous modulus check helper endpoint in a future version.
	15th June 2015
	Updated MIME type negotiation to 406 if a bad Accept header is provided.
	9th June 2015
	Added new events for payment created, subscription created, and refund paid.
	29th April 2015
	Released API version 2015-04-29. See blog post for more details and upgrade guide.

 	Removes Roles and Users from the API
	Replaces Api Keys with Access Tokens

	Replaces Publishable Api Keys with Publishable Access Tokens

	Removes explicit sort_code field from bank account creation APIs in favour of local details

	Removes Webhook-Key-Id header from webhooks we send

 Client Libraries

We also provide client libraries to make your integration easier.

Currently we have the following libraries available:

	GoCardless Pro Ruby
	GoCardless Pro Python
	GoCardless Pro Java
	GoCardless Pro PHP
	GoCardless .NET
	GoCardless Node.js
	GoCardless Pro Go

If there’s a another language you’d like a library for, please get in touch to let us know.

 API Usage

 Making Requests

Base URLs

The base URLs for the GoCardless API are
- https://api.gocardless.com/ for live
- https://api-sandbox.gocardless.com/ for sandbox

The API is only available over HTTPS. Attempting to access the API over an
unsecured HTTP connection will return a tls_required error.

Authentication

After creating an access token in the dashboard, you must provide it
in an Authorization request header (using the
bearer
authentication scheme) when making API requests.

Authorization: Bearer TOP_SECRET_ACCESS_TOKEN

If you’re using our JavaScript Flow, you must use a publishable
access token instead.

Versions

Every request must specify a GoCardless-Version header, with a released
API version.

GoCardless-Version: 2015-07-06

Currently available versions:

 	2015-07-06
	Removed helper endpoint (replaced with new individual endpoints).

Historic versions which are no longer available:

	2015-04-29
	Changed auth and removed sort_code.
	2014-11-03
	Changed validations on charge_customer_at.
	2014-10-03
	Enforced validation of keys passed to all endpoints.
	2014-09-01
	First Pro API release.

MIME Types

All requests and responses are JSON-formatted and UTF-8 encoded.

An Accept header is required for all requests, for example:

Accept: application/json

A Content-Type and Content-Length header must be given when sending data to the API
(using POST and PUT endpoints), for example:

Content-Type: application/json
Content-Length: 3495

For the Accept and Content-Type headers, you may
give either the standard JSON MIME type (application/json), or the JSON-API
variant (application/vnd.api+json).

You will receive an invalid_content_type error if you attempt to make a POST/PUT
request without one of these MIME types.

In the case of a missing Content-Length header,
you will receive an Error 411 (Length Required) error message. Although, the majority
of HTTP clients should send the header by default.

PUT, PATCH and DELETE

If your HTTP client or proxy doesn’t support PUT or DELETE, you
can instead make a POST request with the header X-HTTP-Method-Override: PUT
or X-HTTP-Method-Override: DELETE.

The HTTP PATCH verb is not allowed by the API, and will result in a
method_not_allowed error. Please use PUT to alter an existing resource.

Rate Limiting

We apply a rate limit to all API requests, to prevent excessive numbers of simultaneous
requests from an individual integrator degrading the API experience for others.

Currently, this limit stands at 1000 requests per minute. If you are making requests from
a partner integration (on behalf of a merchant), the rate limit is 1000 requests per
minute per merchant. The limit can always be found in the response header
ratelimit-limit.

If your API call returns a 429 status code with a rate_limit_exceeded error, you have
exceeded this limit. These requests can be safely retried. We supply information in the
ratelimit-remaining and ratelimit-reset headers, which indicate how many requests are
allowed in the current time window, and the time after which the rate limit will reset,
respectively.

For example, reading response headers like these, your integration is permitted to make a
further 163 requests until Thu, 03 May 2018 16:00:00 GMT, after which the limit will
reset back to 1000 for the next time window:

ratelimit-limit: 1000
ratelimit-remaining: 163
ratelimit-reset: Thu, 03 May 2018 16:00:00 GMT

 If you are planning to make a large number of requests to our API, our rate limit should
 be regarded as a performance target: if you can successfully hit 1000 requests/minute,
 your task will be completed in the shortest possible time.

Timeouts

Some timeouts affect HTTP requests and connections to the API.

	
Request Timeout - we have a request timeout of 29 seconds. A single request cannot last
more than this amount of time.
	
Keepalive Timeout - we have a keepalive timeout (also known as an idle timeout) of 10
minutes on persistent HTTP connections. If a connection has been open with no request for
that time period, the connection will be closed.

Idempotency Keys

Some requests are dangerous to make twice. In a situation like submitting payments,
retrying a request that appeared to fail (for example due to a network timeout)
could lead to a payment being taken twice. This is clearly undesirable.

When creating resources, our API supports idempotent creation. If you make a request
with an Idempotency-Key header, we only allow that key to be used for a single
successful request. Any requests to create a resource with a key that has previously been
used will not succeed, and will respond with a 409 idempotent_creation_conflict
error, with the error including a links.conflicting_resource_id attribute pointing
to the already-existing resource.

Our API libraries will automatically generate
idempotency keys when you try to create a resource. However, you might want to generate
and supply your own - for example, using an ID from your database to identify a record
(for example a payment you’re going to collect) will protect against not only network
errors, but also accidentally doing the same thing twice from your side.

Idempotency keys may be no longer than 128 characters.

Idempotency keys are intended to prevent conflicts over short periods of time,
and will not be persisted indefinitely.
We guarantee that we will honour idempotency keys for at least 30 days.
After this point we reserve the right to respect the keys for any further length of time and this behaviour must not be relied upon.
We strongly encourage generating idempotency keys using UUIDv4 but any non-repeating unique identifier is sufficient.

Optional properties

When making requests, optional properties should be completely omitted from the JSON when not being used.
This is automatically handled in our API libraries and
is only relevant if you create your own.

 Dates and Times

All timestamps are formatted as ISO8601 with timezone information. For API calls
that allow for a timestamp to be specified, we use that exact timestamp. These
timestamps look something like 2014-02-27T15:05:06.123Z.

For endpoints that require dates, we expect a date string of the format YYYY-MM-DD,
where an example would look like 2014-02-27.

 Cursor Pagination

All list/index endpoints are ordered and paginated reverse chronologically by
default.

Options

The following options are available on all cursor-paginated endpoints:

	before
	ID of the object immediately following the array of objects to be returned.
	after
	ID of the object immediately preceding the array of objects to be returned.
	limit
	Upper bound for the number of objects to be returned. Defaults to 50. Maximum of 500.

Response

Paginated results are always returned in an array, and include the following
meta data:

	before
	The ID of the first resource that has been returned.
	after
	The ID of the last resource that has been returned.
	limit
	The upper bound placed on the number of objects returned. If there were not enough remaining objects in the list of data then fewer than this number will have been returned.

 HTTP

 HTTP
 GET https://api.gocardless.com/resources?after=ID789 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "after": "ID456",
 "before": "ID123"
 },
 "limit": 50
 },
 "resources": [{
 ...
 }]
}

 Response Codes

You may encounter the following response codes. Any unsuccessful response codes
will contain more information to help you identify the cause of the problem.

	200
	OK. The request has succeeded.
	201
	Created. The request has been fulfilled and resulted in a new resource being created. The newly created resource can be referenced by the URI(s) returned in the entity of the response, with the most specific URI for the resource given by a Location header field.
	204
	No Content. The request was successful but no body was returned.
	400
	Bad Request. The request could not be understood by the server, usually due to malformed syntax. The response body will contain more details in the form of an array.
	401
	Unauthorized. The client has not provided a valid Authentication HTTP header or the user making the request has been disabled.
	403
	Forbidden. The client has provided a valid Authentication header, but does not have permission to access this resource.
	404
	Not Found. The requested resource was not found or the authenticated user cannot access the resource. The response body will explain which resource was not found.
	405
	Method Not Allowed. The HTTP verb used, or resource requested is not allowed. Note that we do not allow the PATCH verb to be used, and PUT should be used instead.
	406
	Not Acceptable. The content type specified in the Accept header was not acceptable to this endpoint.
	409
	Conflict. The resource to be created by your request already exists.
	410
	Gone. The authenticated user can access the requested resource, but it has been removed. The response body will explain which resource has been removed.
	415
	Unsupported Media Type. The response error will explain what types are accepted.
	422
	Unprocessable Entity. Could not process a POST or PUT request because the request is invalid. The response body will contain more details.
	426
	Upgrade Required. An unsecured connection was refused. Upgrade to TLS/SSL.
	429
	Too Many Requests. A rate limit has been reached. The headers will explain the details of the rate limit.

	500
	Internal Server Error. The server encountered an error while processing your request and failed. Please retry the request. If the problem persists, please report this to the GoCardless support team and quote the request_id.
	504
	Gateway Timeout. The request timed out and should be retried. If the problem persists, please report this to the GoCardless support team and quote the request_id.

 Scenario Simulators

When you’re building an integration with the API, there are some common paths you should make sure your integration handles successfully.

In the sandbox environment, we provide scenario simulators which allow you to manually trigger certain cases (like a customer cancelling their mandate or a payment failing due to lack of funds) from the Dashboard so you can test how your integration responds.

To find out more, see our scenario simulators guide.

 Errors

Every error includes a type, the HTTP status code, a short message, a
documentation_url, linking to the relevant section of this document, and a
unique request_id which can be used to help the GoCardless support team
find your error quickly.

There is also an errors key which is an array listing any errors that have
been raised in one of two formats.

When the type is validation_failed, each error will be composed of a field
and a message describing what is wrong with that field.

For all other errors, the structure will contain a reason and a message
describing what the problem encountered.

There are 4 types of errors, depending on the root cause. These are:

Error types

	gocardless
	This is an error that has occured within GoCardless while processing your requests. In some cases, depending on the specific issue highlighted in errors, the request should be retried. If the problem persists, it should be reported to our support team with the request_id, so we can resolve the issue.
	invalid_api_usage
	This is an error with the request you made. It could be an invalid URL, the authentication header could be missing, invalid, or grant insufficient permissions, you may have reached your rate limit, or the syntax of your request could be incorrect. The errors will give more detail of the specific issue.
	invalid_state
	The action you are trying to perform is invalid due to the state of the resource you are requesting it on. For example, a payment you are trying to cancel might already have been submitted. The errors will give more details.

	validation_failed
	The parameters submitted with your request were invalid. Details of which fields were invalid and why are included in the response. The request_pointer parameter indicates the exact field of the request that triggered the validation error.

These four types should be handled very differently: gocardless errors should send an alert to your dev team, or directly to GoCardless support; invalid_api_usage should send an alert to your dev team; invalid_state should alert the end user and not allow them to retry; validation_failed should alert the end user and prompt them to correct their input.

GoCardless errors

	internal_server_error
	An internal error occurred while processing your request. This should be reported to our support team with the request_id, so we can resolve the issue.

	request_timed_out
	The request did not complete within a reasonable time. In this case, the request should be retried (possibly with different parameters). If the problem persists, it should be reported to our support team with the request_id, so we can resolve the issue.

	query_timed_out
	The query for this request did not complete within a reasonable time, potentially due to being too complex. In this case, the request should be retried (possibly with different parameters). If the problem persists, it should be reported to our support team with the request_id, so we can resolve the issue.

Invalid API usage errors

	invalid_type
	The errors key may also hold an array of type errors if the JSON you sent
was incorrectly typed. These are in the same format as validation errors (with
a message and field per error). A type error will also be returned if you
include any additional, unknown parameters.

	path_not_found
	The path was not recognised. Check that you spelled the resource name correctly, and that the URL is formatted correctly.

	resource_not_found
	The ID in the request was not found in our database.

	link_not_found
	One of the link[resource] IDs in the request was not found. Your integration should ensure that end users can only use existing resources.

	unauthorized
	Your username/password was not recognised.

	forbidden
	You were authenticated, but you do not have permission to access that resource.

	feature_disabled
	You are trying to use a feature which hasn’t been enabled on your account. Please contact support if you would like to enable it.

	not_acceptable
	The content type specified in your Accept header was not acceptable to this endpoint.

	request_entity_too_large
	The body of your request is too large.

	unsupported_media_type
	The API communicates using JSON only. Make sure that your Accept header permits JSON, and your Content-Type header is supported, if you are sending JSON data (e.g. with a POST or PUT request).

	rate_limit_exceeded
	You have exceeded the rate limit. See the included headers for when your rate limit will be reset.

	access_token_not_found
	No access token with the ID specified was found.

	access_token_not_active
	The access token you are using has been disabled.

	access_token_revoked
	The access token you are using has been revoked by the user.

	missing_authorization_header
	No Authorization header was included in your request. See making requests for details on how to structure your authorisation header.

	invalid_authorization_header
	The Authorization header sent was not valid. Make sure it was constructed as described in making requests.

	insufficient_permissions
	The access token you are using does not have the right scope to perform the requested action.

	method_not_allowed
	The HTTP verb used is not permitted. Note that we do not allow PATCH requests, and PUT must be used to update resources.

	bad_request
	The request syntax was incorrect.

	idempotency_key_too_long
	An idempotency key was supplied for this request but exceeded the max length of this key. See idempotency keys for details on how to work with idempotency.

	invalid_document_structure
	The JSON sent to the server was not in the correct structure. Note that JSON parameters may not be sent at the top level, but must be sent under the name of the resource. See the examples for details on how this is done for each endpoint.

	invalid_content_type
	When including a JSON body with a request you must also include a Content-Type header, set to application/json or application/vnd.api+json.

	tls_required
	The GoCardless API can only be accessed over TLS/SSL. Make sure you are sending requests to urls starting with https://, not http://.

	missing_version_header
	No GoCardless-Version header was included in your request. See making requests for details on how to set your version header.

	version_not_found
	The GoCardless-Version specified was not found. The version must be one of those listed in the changelog.

	invalid_filters
	The combination of filters specified in the query string of your request are not allowed. Only certain combinations of filters may be applied to each list endpoint, as documented on each endpoint.

	request_body_not_allowed
	Sending a request body is not supported for the HTTP method you have used. Use query string parameters in the URL instead.

	customer_data_removed
	The customer has been removed and they can no longer be returned by our API. You should remove any GoCardless references to these objects in your systems.

	payout_items_data_archived
	Payout items for payouts created more than 6 months ago have been archived. Please contact support if you require access to this data.

Invalid state errors

	cancellation_failed
	The mandate, payment or subscription was not in a cancellable state. It might have already been cancelled, failed, or it might be too late in the submission process to cancel. For example, payments cannot be cancelled once they are submitted to the banks.

	retry_failed
	The payment could not be retried.

	disable_failed
	The customer or creditor bank account could not be disabled, as it is already disabled.

	mandate_is_inactive
	The payment could not be created, because the mandate linked is cancelled, failed, or expired.

	mandate_replaced
	The resource could not be created, because the mandate it links to has been replaced (for example, because the creditor has moved to a new Service User Number). The new mandate can be found through the reference to links[new_mandate] in the error response, or by retrieving the original mandate and checking links[new_mandate].

	bank_account_disabled
	The mandate could not be created because the customer bank account linked is disabled.

	mandate_not_inactive
	The mandate could not be reinstated, because it is already being submitted, or is active.
	
	refund_is_unreachable
	The refund could not be created, because it would not reach the target bank account.

	refund_payment_invalid_state
	The refund could not be created, because the payment specified is not confirmed or paid_out.

	total_amount_confirmation_invalid
	The refund could not be created because the total amount refunded does not match.

	number_of_refunds_exceeded
	The refund could not be created because five refunds have already been created for the given payment.

	idempotent_creation_conflict
	The resource has not been created as a resource has already been created with the supplied idempotency key. See idempotency keys for details.

	customer_bank_account_token_used
	The customer bank account could not be created because the token given has already been used.

	billing_request_must_be_ready_to_fulfil
	
 The billing request must have no outstanding required actions. To check the actions please view the actions array in the billing request get response.

Validation errors

The errors key may also hold an array of individual validation failures in
this case, or one of the following errors.

	bank_account_exists
	The customer or creditor bank account you are trying to create already exists. These resources must be unique.

You should use the corresponding update endpoints to update the details on the existing bank account instead, which will be referenced as links[customer_bank_account] or links[creditor_bank_account] (as appropriate) in the error response.

	available_refund_amount_insufficient
	The refund requested by the creditor could not be created for the given currency, because the creditor does not have a sufficient balance available to cover the cost of the refund.

The amount available for refunds will fluctuate over time, as it is calculated in real time using several indicators. Examples of such indicators are in-flight payments, pending refunds, and any applicable ‘buffer allowance’ provided by GoCardless for the creditor in the given currency. The amount available for refunds will be returned in the metadata of the error response, under the available_refund_amount key, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).

 HTTP

 HTTP
 POST https://api.gocardless.com/customer_bank_accounts HTTP/1.1
Content-Type: application/json
{
 "customer_bank_accounts": {
 "account_number": "55779911",
 "branch_code": "I'm not a sort code",
 "account_holder_name": "Frank Osborne",
 "country_code": "GB",
 "links": {
 "customer": "CU123"
 }
 }
}

HTTP/1.1 422 (Unprocessable Entity)
Content-Type: application/json
{
 "error": {
 "documentation_url": "https://developer.gocardless.com/#validation_failed",
 "message": "Validation failed",
 "type": "validation_failed",
 "code": 422,
 "request_id": "dd50eaaf-8213-48fe-90d6-5466872efbc4",
 "errors": [
 {
 "message": "must be a number",
 "field": "branch_code",
 "request_pointer": "/customer_bank_accounts/branch_code"
 }, {
 "message": "is the wrong length (should be 8 characters)",
 "field": "branch_code",
 "request_pointer": "/customer_bank_accounts/branch_code"
 }
]
 }
}

POST https://api.gocardless.com/customer_bank_accounts HTTP/1.1
Content-Type: application/json
{
 "customer_bank_accounts": {
 "account_number": "55779911",
 "branch_code": "200000",
 "account_holder_name": "Frank Osborne",
 "country_code": "GB",
 "links": {
 "customer": "CU123"
 }
 }
}

HTTP/1.1 400 (Bad Request)
Content-Type: application/json
{
 "error": {
 "message": "Invalid document structure",
 "documentation_url": "https://developer.gocardless.com/#invalid_document_structure",
 "type": "invalid_api_usage",
 "request_id": "bd271b37-a2f5-47c8-b461-040dfe0e9cb1",
 "code": 400,
 "errors": [
 {
 "reason": "invalid_document_structure",
 "message": "Invalid document structure"
 }
]
 }
}

POST https://api.gocardless.com/creditor_bank_accounts HTTP/1.1
Content-Type: application/json
{
 "creditor_bank_accounts": {
 "account_number": "55779911",
 "branch_code": "200000",
 "country_code": "GB",
 "set_as_default_payout_account": true,
 "account_holder_name": "Nude Wines",
 "links": {
 "creditor": "CR123"
 }
 }
}

HTTP/1.1 409 (Conflict)
Content-Type: application/json
{
 "error": {
 "message": "Bank account already exists",
 "documentation_url": "https://developer.gocardless.com/#bank_account_exists",
 "type": "validation_failed",
 "request_id": "bd271b37-a2f5-47c8-b461-040dfe0e9cb1",
 "code": 409,
 "errors": [
 {
 "reason": "bank_account_exists",
 "message": "Bank account already exists",
 "links": {
 "creditor_bank_account": "BA123"
 }
 }
]
 }
}

 Billing Requests

This section contains API endpoints that are used to power Billing Requests.

Billing Requests help create resources that require input or action from a
customer. An example of required input might be additional customer billing
details, while an action would be asking a customer to authorise a payment using
their mobile banking app.

Billing Requests go through a simple lifecycle, with the state exposed as the
status field:

	
 pending, actions need completing before we can fulfil

	
 ready_to_fulfil, all required actions are complete and the integrator may fulfil this request

	
 fulfilled, the request is fulfilled and an resource has been created

	
 cancelled, request was cancelled before it can be completed (no resource will ever be created)

Integrators have a choice between building their own user experience flows to
complete the required actions, or creating a Billing Request Flow against the
Billing Request. Billing Request Flows are a GoCardless managed flow that
knows how to process outstanding actions on the Request, helping the customer
provide their required details and fulfil the request.

We advise most integrators make use of Billing Request Flows to benefit from the
efforts GoCardless put into optimising conversion, adapting to a changing
regulatory environment, and to reduce integration effort.

Even for integrators who want a whitelabel experience, we might advise
completing some actions through a customer integration and leveraging the
Billing Request Flow to complete the more complex actions.

 Bank Authorisations

Bank Authorisations can be used to authorise Billing Requests. Authorisations
are created against a specific bank, usually the bank that provides the payer’s
account.

Creation of Bank Authorisations is only permitted from GoCardless hosted UIs
(see Billing Request Flows) to ensure we meet regulatory requirements for
checkout flows.

Properties

	id
	Unique identifier, beginning with “BAU”.
	authorisation_type
	Type of authorisation, can be either ‘mandate’ or ‘payment’.
	authorised_at
	Fixed timestamp, recording when the user has been authorised.
	created_at
	Timestamp when the flow was created
	expires_at
	Timestamp when the url will expire. Each authorisation url currently lasts for 15 minutes, but this can vary by bank.
	last_visited_at
	Fixed timestamp, recording when the authorisation URL has been visited.
	qr_code_url
	URL to a QR code PNG image of the bank authorisation url.
This QR code can be used as an alternative to providing the url to the payer to allow them to authorise with their mobile devices.
	redirect_uri
	URL that the payer can be redirected to after authorising the payment.

 On completion of bank authorisation, the query parameter of either outcome=success or outcome=failure will be
appended to the redirect_uri to indicate the result of the bank authorisation. If the bank authorisation is
expired, the query parameter outcome=timeout will be appended to the redirect_uri, in which case you should
prompt the user to try the bank authorisation step again.

 The redirect_uri you provide should handle the outcome query parameter for displaying the result of the
bank authorisation as outlined above.

 The BillingRequestFlow ID will also be appended to the redirect_uri as query parameter id=BRF123.

 Defaults to https://pay.gocardless.com/billing/static/thankyou.

	url
	URL for an oauth flow that will allow the user to authorise the payment
	links[billing_request]
	ID of the billing request against which this authorisation was created.
	links[institution]
	ID of the institution against which this authorisation was created.

 Create a Bank Authorisation

Create a Bank Authorisation.

Relative endpoint: POST /bank_authorisations

Restricted: this endpoint is restricted as the authorisation must be used within a
checkout flow that meets regulatory requirements for each payment
scheme. Integrators should use a Billing Request Flow to do this.

If you would like to enable bank authorisations, you will need to go through a separate compliance process.
For more details please get in touch.

Parameters

	redirect_uri
	URL that the payer can be redirected to after authorising the payment.

 On completion of bank authorisation, the query parameter of either outcome=success or outcome=failure will be
appended to the redirect_uri to indicate the result of the bank authorisation. If the bank authorisation is
expired, the query parameter outcome=timeout will be appended to the redirect_uri, in which case you should
prompt the user to try the bank authorisation step again.

 The redirect_uri you provide should handle the outcome query parameter for displaying the result of the
bank authorisation as outlined above.

 The BillingRequestFlow ID will also be appended to the redirect_uri as query parameter id=BRF123.

 Defaults to https://pay.gocardless.com/billing/static/thankyou.

	links[billing_request]
	ID of the billing request against which this authorisation was created.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/bank_authorisations HTTP/1.1
Content-Type: application/json
{
 "bank_authorisations": {
 "redirect_uri": "https://my-company.com/landing",
 "links": {
 "billing_request": "BRQ123"
 }
 }
}

HTTP/1.1 201 Created
Location: /bank_authorisations/BAU123
Content-Type: application/json
{
 "bank_authorisations": {
 "id": "BAU123",
 "url": "https://pay-staging.gocardless.com/obauth/BAU123",
 "qr_code_url": "https://pay-staging.gocardless.com/obauth/BAU123/qr_code",
 "created_at": "2021-03-25T17:26:28.305Z",
 "authorisation_type": "payment",
 "last_visited_at": null,
 "authorised_at": null,
 "expires_at": "2021-03-25T17:41:28.000Z",
 "redirect_uri": "https://my-company.com/landing",
 "links": {
 "billing_request": "BRQ123",
 "institution": "monzo"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->bankAuthorisations()->create([
 "params" => [
 "redirect_uri" => "https://my-company.com/landing",
 "links" => [
 "billing_request" => "BRQ123"
]
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.bank_authorisations.create(params={
 "redirect_uri": "https://my-company.com/landing",
 "links": {
 "billing_request": "BRQ123"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.bank_authorisations.create(
 params: {
 redirect_uri: "https://my-company.com/landing",
 links: {
 billing_request: "BRQ123"
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

BankAuthorisation bankAuthorisation = client.bankAuthorisations().create()
 .withRedirectUri("https://my-company.com/landing")
 .withLinksBillingRequest("BRQ123")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const bankAuthorisation = await client.bankAuthorisations.create({
 redirect_uri: "https://my-company.com/landing",
 links: {
 billing_request: "BRQ123"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var authorisationLinks = new gocardless.BankAuthorisationCreateRequest.BankAuthorisationLinks
{
 BillingRequest = "BRQ123"
};

var resp = await gocardless.BankAuthorisations.CreateAsync(
 new GoCardless.Services.BankAuthorisationCreateRequest()
 {
 RedirectUri = "https://my-company.com/landing",
 links = authorisationLinks,
 }
);

GoCardless.Resources.BankAuthorisation bankAuthorisation = resp.BankAuthorisation;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 bankAuthorisationCreateParams := gocardless.BankAuthorisationCreateParams{
 RedirectUri: "https://my-company.com/landing",
 Links: gocardless.BankAuthorisationCreateParamsLinks{
 BillingRequest: "BR123",
 },
 }

 bankAuthorisation, err := client.BankAuthorisations.Create(context, bankAuthorisationCreateParams)

}

 Get a Bank Authorisation

Get a single bank authorisation.

Relative endpoint: GET /bank_authorisations/BAU123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/bank_authorisations/BAU123 HTTP/1.1

HTTP/1.1 200
Content-Type: application/json
{
 "bank_authorisations": {
 "id": "BAU123",
 "url": "https://pay-staging.gocardless.com/obauth/BAU123",
 "qr_code_url": "https://pay-staging.gocardless.com/obauth/BAU123/qr_code",
 "created_at": "2021-03-25T17:26:28.305Z",
 "authorisation_type": "payment",
 "last_visited_at": null,
 "authorised_at": null,
 "expires_at": "2021-03-25T17:41:28.000Z",
 "redirect_uri": "https://my-company.com/landing",
 "links": {
 "billing_request": "BRQ123",
 "institution": "monzo"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->bankAuthorisations()->get("BAU123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.bank_authorisations.get("BAU123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.bank_authorisations.get("BAU123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.bankAuthorisations().get("BAU123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const resp = await client.bankAuthorisations.find("BAU123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BankAuthorisations.GetAsync("BAU123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 bankAuthorisation, err := client.BankAuthorisations.Get(context, "BAU123")

}

 Billing Requests

Billing Requests help create resources that require input or action from a
customer. An example of required input might be additional customer billing
details, while an action would be asking a customer to authorise a payment
using their mobile banking app.

See Billing Requests: Overview
for how-to’s, explanations and tutorials.

Properties

	id
	Unique identifier, beginning with “BRQ”.
	actions
	List of actions that can be performed before this billing request can be fulfilled.

 Each instance will contain these properties:

 	
 available_currencies: List of currencies the current mandate supports

	
 bank_authorisation: Describes the behaviour of bank authorisations, for the bank_authorisation action

	
 collect_customer_details: Additional parameters to help complete the collect_customer_details action

	
 completes_actions: Which other action types this action can complete.

	
institution_guess_status: Describes whether we inferred the institution from the provided bank account details. One of:
 	
not_needed: we won’t attempt to infer the institution as it is not needed. Either because it was manually selected or the billing request does not support this feature
	
pending: we are waiting on the bank details in order to infer the institution
	
failed: we weren’t able to infer the institution
	
success: we inferred the institution and added it to the resources of a Billing Request

	
 required: Informs you whether the action is required to fulfil the billing request or not.

	
 requires_actions: Requires completing these actions before this action can be completed.

	
 status: Status of the action

	
type: Unique identifier for the action.

	created_at
	Fixed timestamp, recording when this resource was created.
	fallback_enabled
	(Optional) If true, this billing request can fallback from instant payment to direct debit.
Should not be set if GoCardless payment intelligence feature is used.

 See Billing Requests: Retain customers with Fallbacks
for more information.

	mandate_request[authorisation_source]
	This field is ACH specific, sometimes referred to as SEC code.

 This is the way that the payer gives authorisation to the merchant.
 web: Authorisation is Internet Initiated or via Mobile Entry (maps to SEC code: WEB)
 telephone: Authorisation is provided orally over telephone (maps to SEC code: TEL)
 paper: Authorisation is provided in writing and signed, or similarly authenticated (maps to SEC code: PPD)

	constraints[end_date]
	The latest date at which payments can be taken, must occur after start_date if present

 This is an optional field and if it is not supplied the agreement will be considered open and
will not have an end date. Keep in mind the end date must take into account how long it will
take the user to set up this agreement via the Billing Request.

	constraints[max_amount_per_payment]
	The maximum amount that can be charged for a single payment. Required for VRP.
	periodic_limits
	List of periodic limits and constraints which apply to them

 Each instance will contain these properties:

 	
 alignment: The alignment of the period.

 calendar - this will finish on the end of the current period. For example this will expire on the Monday for the current week or the January for the next year.

 creation_date - this will finish on the next instance of the current period. For example Monthly it will expire on the same day of the next month, or yearly the same day of the next year.

	
 max_payments: (Optional) The maximum number of payments that can be collected in this periodic limit.

	
 max_total_amount: The maximum total amount that can be charged for all payments in this periodic limit.
Required for VRP.

	
 period: The repeating period for this mandate

	constraints[start_date]
	The date from which payments can be taken.

 This is an optional field and if it is not supplied the start date will be set to the day
authorisation happens.

	mandate_request[currency]
	
ISO 4217 currency code.
	mandate_request[description]
	A human-readable description of the payment and/or mandate. This will be displayed to the payer when authorising the billing request.
	links[mandate]
	(Optional) ID of the mandate that was created from this mandate request. this mandate request.
	mandate_request[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	mandate_request[payer_requested_dual_signature]
	This attribute can be set to true if the payer has indicated that multiple signatures are required for the mandate. As long as every other Billing Request actions have been completed, the payer will receive an email notification containing instructions on how to complete the additional signature. The dual signature flow can only be completed using GoCardless branded pages.
	mandate_request[scheme]
	A bank payment scheme. Currently “ach”, “autogiro”, “bacs”, “becs”, “becs_nz”, “betalingsservice”, “faster_payments”, “pad”, “pay_to” and “sepa_core” are supported. Optional for mandate only requests - if left blank, the payer will be able to select the currency/scheme to pay with from a list of your available schemes.
	mandate_request[verify]
	Verification preference for the mandate. One of:

 	
 minimum: only verify if absolutely required, such as when part of scheme rules

	
 recommended: in addition to minimum, use the GoCardless payment intelligence solution to decide if a payer should be verified

	
 when_available: if verification mechanisms are available, use them

	
 always: as when_available, but fail to create the Billing Request if a mechanism isn’t available

By default, all Billing Requests use the recommended verification preference. It uses GoCardless payment intelligence solution to determine if a payer is fraudulent or not. The verification mechanism is based on the response and the payer may be asked to verify themselves. If the feature is not available, recommended behaves like minimum.

If you never wish to take advantage of our reduced risk products and Verified Mandates as they are released in new schemes, please use the minimum verification preference.

See Billing Requests: Creating Verified Mandates
 for more information.

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payment_request[amount]
	Amount in minor unit (e.g. pence in GBP, cents in EUR).
	payment_request[app_fee]
	The amount to be deducted from the payment as an app fee, to be paid to the partner integration which created the billing request, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	payment_request[currency]
	
ISO 4217 currency code. GBP and EUR supported; GBP with your customers in the UK and for EUR with your customers in Germany only.
	payment_request[description]
	A human-readable description of the payment and/or mandate. This will be displayed to the payer when authorising the billing request.
	links[payment]
	(Optional) ID of the payment that was created from this payment request.
	payment_request[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payment_request[scheme]
	(Optional) A scheme used for Open Banking payments. Currently faster_payments is supported in the UK (GBP) and sepa_credit_transfer and sepa_instant_credit_transfer are supported in Germany (EUR). In Germany, sepa_credit_transfer is used as the default. Please be aware that sepa_instant_credit_transfer may incur an additional fee for your customer.
	purpose_code
	Specifies the high-level purpose of a mandate and/or payment using a set of pre-defined categories. Required for the PayTo scheme, optional for all others. Currently mortgage, utility, loan, dependant_support, gambling, retail, salary, personal, government, pension, tax and other are supported.
	customer[company_name]
	Customer’s company name. Required unless a given_name and family_name are provided. For Canadian customers, the use of a company_name value will mean that any mandate created from this customer will be considered to be a “Business PAD” (otherwise, any mandate will be considered to be a “Personal PAD”).
	customer[created_at]
	Fixed timestamp, recording when this resource was created.
	customer[email]
	Customer’s email address. Required in most cases, as this allows GoCardless to send notifications to this customer.
	customer[family_name]
	Customer’s surname. Required unless a company_name is provided.
	customer[given_name]
	Customer’s first name. Required unless a company_name is provided.
	customer[id]
	Unique identifier, beginning with “CU”.
	customer[language]
	
ISO 639-1 code. Used as the language for notification emails sent by GoCardless if your organisation does not send its own (see compliance requirements). Currently only “en”, “fr”, “de”, “pt”, “es”, “it”, “nl”, “da”, “nb”, “sl”, “sv” are supported. If this is not provided, the language will be chosen based on the country_code (if supplied) or default to “en”.
	customer[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	customer[phone_number]
	
ITU E.123 formatted phone number, including country code.
	customer_bank_account[account_holder_name]
	Name of the account holder, as known by the bank. Usually this is the same as the name stored with the linked creditor. This field will be transliterated, upcased and truncated to 18 characters. This field is required unless the request includes a customer bank account token.
	customer_bank_account[account_number_ending]
	The last few digits of the account number. Currently 4 digits for NZD bank accounts and 2 digits for other currencies.
	customer_bank_account[account_type]
	Bank account type. Required for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	customer_bank_account[bank_name]
	Name of bank, taken from the bank details.
	customer_bank_account[country_code]
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	customer_bank_account[created_at]
	Fixed timestamp, recording when this resource was created.
	customer_bank_account[currency]
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	customer_bank_account[enabled]
	Boolean value showing whether the bank account is enabled or disabled.
	customer_bank_account[id]
	Unique identifier, beginning with “BA”.
	links[customer]
	ID of the customer that owns this bank account.
	customer_bank_account[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	customer_billing_detail[address_line1]
	The first line of the customer’s address.
	customer_billing_detail[address_line2]
	The second line of the customer’s address.
	customer_billing_detail[address_line3]
	The third line of the customer’s address.
	customer_billing_detail[city]
	The city of the customer’s address.
	customer_billing_detail[country_code]
	ISO 3166-1 alpha-2 code.
	customer_billing_detail[created_at]
	Fixed timestamp, recording when this resource was created.
	customer_billing_detail[danish_identity_number]
	For Danish customers only. The civic/company number (CPR or CVR) of the customer. Must be supplied if the customer’s bank account is denominated in Danish krone (DKK).
	customer_billing_detail[id]
	Unique identifier, beginning with “CU”.
	customer_billing_detail[ip_address]
	For ACH customers only. Required for ACH customers. A string containing the IP address of the payer to whom the mandate belongs (i.e. as a result of their completion of a mandate setup flow in their browser).

 Not required for creating offline mandates where authorisation_source is set to telephone or paper.

	customer_billing_detail[postal_code]
	The customer’s postal code.
	customer_billing_detail[region]
	The customer’s address region, county or department. For US customers a 2 letter ISO3166-2:US state code is required (e.g. CA for California).
	schemes
	The schemes associated with this customer billing detail
	customer_billing_detail[swedish_identity_number]
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer. Must be supplied if the customer’s bank account is denominated in Swedish krona (SEK). This field cannot be changed once it has been set.
	status
	One of:

 	
 pending: the billing request is pending and can be used

	
 ready_to_fulfil: the billing request is ready to fulfil

	
 fulfilling: the billing request is currently undergoing fulfilment

	
 fulfilled: the billing request has been fulfilled and a payment created

	
 cancelled: the billing request has been cancelled and cannot be used

	links[bank_authorisation]
	(Optional) ID of the bank authorisation that was used to verify this request.
	links[creditor]
	ID of the associated creditor.
	links[customer]
	ID of the customer that will be used for this request
	links[customer_bank_account]
	(Optional) ID of the customer_bank_account that will be used for this request
	links[customer_billing_detail]
	ID of the customer billing detail that will be used for this request
	links[mandate_request]
	(Optional) ID of the associated mandate request
	links[mandate_request_mandate]
	(Optional) ID of the mandate that was created from this mandate request. this mandate request.
	links[organisation]
	ID of the associated organisation.
	links[payment_provider]
	(Optional) ID of the associated payment provider
	links[payment_request]
	(Optional) ID of the associated payment request
	links[payment_request_payment]
	(Optional) ID of the payment that was created from this payment request.

 Create a Billing Request

Relative endpoint: POST /billing_requests

Note: Instant Bank Pay is only available for transactions in GBP with your customers in the UK and for EUR with your customers in Germany. We will be adding other countries soon.

Warning: by default, the ability to provide a custom mandate reference is switched off. The banking system rules for valid references are quite complex, and we recommend allowing GoCardless to generate it. If you would like to provide custom references, please contact support.

Parameters

	fallback_enabled
	(Optional) If true, this billing request can fallback from instant payment to direct debit.
Should not be set if GoCardless payment intelligence feature is used.

 See Billing Requests: Retain customers with Fallbacks
for more information.

	mandate_request[authorisation_source]
	This field is ACH specific, sometimes referred to as SEC code.

 This is the way that the payer gives authorisation to the merchant.
 web: Authorisation is Internet Initiated or via Mobile Entry (maps to SEC code: WEB)
 telephone: Authorisation is provided orally over telephone (maps to SEC code: TEL)
 paper: Authorisation is provided in writing and signed, or similarly authenticated (maps to SEC code: PPD)

	mandate_request[constraints]
	Constraints that will apply to the mandate_request. (Optional) Specifically for PayTo and VRP.

 Properties:

 	
 end_date: The latest date at which payments can be taken, must occur after start_date if present

 This is an optional field and if it is not supplied the agreement will be considered open and
will not have an end date. Keep in mind the end date must take into account how long it will
take the user to set up this agreement via the Billing Request.

	
max_amount_per_payment: The maximum amount that can be charged for a single payment. Required for VRP.
	
periodic_limits: List of periodic limits and constraints which apply to them
	
 start_date: The date from which payments can be taken.

 This is an optional field and if it is not supplied the start date will be set to the day
authorisation happens.

	mandate_request[currency]
	
ISO 4217 currency code.
	mandate_request[description]
	A human-readable description of the payment and/or mandate. This will be displayed to the payer when authorising the billing request.
	mandate_request[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	mandate_request[reference]
	Unique reference. Different schemes have different length and character set requirements. GoCardless will generate a unique reference satisfying the different scheme requirements if this field is left blank.
	mandate_request[scheme]
	A bank payment scheme. Currently “ach”, “autogiro”, “bacs”, “becs”, “becs_nz”, “betalingsservice”, “faster_payments”, “pad”, “pay_to” and “sepa_core” are supported. Optional for mandate only requests - if left blank, the payer will be able to select the currency/scheme to pay with from a list of your available schemes.
	mandate_request[verify]
	Verification preference for the mandate. One of:

 	
 minimum: only verify if absolutely required, such as when part of scheme rules

	
 recommended: in addition to minimum, use the GoCardless payment intelligence solution to decide if a payer should be verified

	
 when_available: if verification mechanisms are available, use them

	
 always: as when_available, but fail to create the Billing Request if a mechanism isn’t available

By default, all Billing Requests use the recommended verification preference. It uses GoCardless payment intelligence solution to determine if a payer is fraudulent or not. The verification mechanism is based on the response and the payer may be asked to verify themselves. If the feature is not available, recommended behaves like minimum.

If you never wish to take advantage of our reduced risk products and Verified Mandates as they are released in new schemes, please use the minimum verification preference.

See Billing Requests: Creating Verified Mandates
 for more information.

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payment_request[amount]
	Amount in minor unit (e.g. pence in GBP, cents in EUR).
	payment_request[app_fee]
	The amount to be deducted from the payment as an app fee, to be paid to the partner integration which created the billing request, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	payment_request[currency]
	
ISO 4217 currency code. GBP and EUR supported; GBP with your customers in the UK and for EUR with your customers in Germany only.
	payment_request[description]
	A human-readable description of the payment and/or mandate. This will be displayed to the payer when authorising the billing request.
	payment_request[funds_settlement]
	This field will decide how GoCardless handles settlement of funds from the customer.

 	
managed will be moved through GoCardless’ account, batched, and payed out.
	
direct will be a direct transfer from the payer’s account to the merchant where
invoicing will be handled separately.

	payment_request[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payment_request[scheme]
	(Optional) A scheme used for Open Banking payments. Currently faster_payments is supported in the UK (GBP) and sepa_credit_transfer and sepa_instant_credit_transfer are supported in Germany (EUR). In Germany, sepa_credit_transfer is used as the default. Please be aware that sepa_instant_credit_transfer may incur an additional fee for your customer.
	purpose_code
	Specifies the high-level purpose of a mandate and/or payment using a set of pre-defined categories. Required for the PayTo scheme, optional for all others. Currently mortgage, utility, loan, dependant_support, gambling, retail, salary, personal, government, pension, tax and other are supported.
	links[creditor]
	ID of the associated creditor. Only required if your account manages multiple creditors.
	links[customer]
	ID of the customer against which this request should be made.
	links[customer_bank_account]
	(Optional) ID of the customer_bank_account against which this request should be made.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_requests HTTP/1.1
Content-Type: application/json
{
 "billing_requests": {
 "payment_request": {
 "description": "First Payment",
 "amount": "500",
 "currency": "GBP"
 },
 "mandate_request": {
 "scheme": "bacs"
 }
 }
}

HTTP/1.1 201 Created
Location: /billing_requests/BRQ123
Content-Type: application/json
{
 "billing_requests": {
 "id": "BRQ123",
 "created_at": "2021-03-22T12:20:04.397Z",
 "status": "pending",
 "mandate_request": {
 "currency": "GBP",
 "scheme": "bacs",
 "links": {}
 },
 "payment_request": {
 "description": "First Payment",
 "currency": "GBP",
 "amount": 500,
 "scheme": "faster_payments",
 "links": {}
 },
 "metadata": null,
 "links": {
 "customer": "CU123",
 "customer_billing_detail": "CBD123"
 },
 "creditor_name": "Mr Creditor",
 "actions": [
 {
 "type": "choose_currency",
 "required": true,
 "completes_actions": [],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "collect_customer_details",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "choose_currency"
],
 "status": "pending",
 "collect_customer_details": {
 "incomplete_fields": {
 "customer": [
 "email",
 "given_name",
 "family_name"
],
 "customer_billing_detail": [
 "address_line1",
 "city",
 "postal_code",
 "country_code"
]
 }
 }
 },
 {
 "type": "select_institution",
 "required": false,
 "completes_actions": [],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "collect_bank_account",
 "required": true,
 "completes_actions": [
 "choose_currency"
],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "bank_authorisation",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "collect_bank_account"
],
 "status": "pending"
 }
],
 "resources": {
 "customer": {
 "id": "CU123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "email": null,
 "given_name": null,
 "family_name": null,
 "company_name": null,
 "language": "en",
 "phone_number": null,
 "metadata": {}
 },
 "customer_billing_detail": {
 "id": "CBD123",
 "created_at": "2021-03-22T12:20:04.374Z",
 "address_line1": null,
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": null,
 "swedish_identity_number": null,
 "danish_identity_number": null
 }
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequests()->create([
 "params" => [
 "payment_request" => [
 "description" => "First Payment",
 "amount" => "500",
 "currency" => "GBP",
],
 "mandate_request" => [
 "scheme" => "bacs"
]
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_requests.create(params={
 "payment_request": {
 "description": "First Payment",
 "amount": "500",
 "currency": "GBP",
 },
 "mandate_request": {
 "scheme": "bacs"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_requests.create(
 params: {
 payment_request: {
 description: "First Payment",
 amount: "500",
 currency: "GBP",
 },
 mandate_request: {
 scheme: "bacs"
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

BillingRequest billingRequest = client.billingRequests().create()
 .withPaymentRequestDescription("First Payment")
 .withPaymentRequestAmount(500)
 .withPaymentRequestCurrency(Currency.GBP)
 .withMandateRequestScheme("bacs")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const billingRequest = await client.billingRequests.create({
 payment_request: {
 description: "First Payment",
 amount: "500",
 currency: "GBP",
 },
 mandate_request: {
 scheme: "bacs"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var paymentRequest = new gocardless.BillingRequestCreateRequest.BillingRequestPaymentRequest
{
 Description = "First payment",
 Amount = 500,
 Currency = "GBP",
};

var mandateRequest = new gocardless.BillingRequestCreateRequest.BillingRequestMandateRequest
{
 Scheme = "bacs",
};

var resp = await gocardless.BillingRequests.CreateAsync(
 new GoCardless.Services.BillingRequestCreateRequest()
 {
 PaymentRequest = paymentRequest,
 MandateRequest = mandateRequest,
 }
);

GoCardless.Resources.BillingRequest billingRequest = resp.BillingRequest;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestCreateParams := gocardless.BillingRequestCreateParams{
 PaymentRequest: &gocardless.BillingRequestCreateParamsPaymentRequest{
 Amount: 1000,
 Currency: "GBP",
 Description: "First Payment",
 },
 MandateRequest: &gocardless.BillingRequestCreateParamsMandateRequest{
 Scheme: "bacs",
 },
 }

 billingRequest, err := client.BillingRequests.Create(context, billingRequestCreateParams)

}

 Collect customer details

If the billing request has a pending collect_customer_details
action, this endpoint can be used to collect the details in order to
complete it.

The endpoint takes the same payload as Customers, but checks that the
customer fields are populated correctly for the billing request scheme.

Whatever is provided to this endpoint is used to update the referenced
customer, and will take effect immediately after the request is
successful.

Relative endpoint: POST /billing_requests/BRQ123/actions/collect_customer_details

Restricted: this endpoint is restricted to GoCardless Pro and GoCardless Enterprise accounts with the custom payment pages upgrade.

Parameters

	customer[company_name]
	Customer’s company name. Required unless a given_name and family_name are provided. For Canadian customers, the use of a company_name value will mean that any mandate created from this customer will be considered to be a “Business PAD” (otherwise, any mandate will be considered to be a “Personal PAD”).
	customer[email]
	Customer’s email address. Required in most cases, as this allows GoCardless to send notifications to this customer.
	customer[family_name]
	Customer’s surname. Required unless a company_name is provided.
	customer[given_name]
	Customer’s first name. Required unless a company_name is provided.
	customer[language]
	
ISO 639-1 code. Used as the language for notification emails sent by GoCardless if your organisation does not send its own (see compliance requirements). Currently only “en”, “fr”, “de”, “pt”, “es”, “it”, “nl”, “da”, “nb”, “sl”, “sv” are supported. If this is not provided and a customer was linked during billing request creation, the linked customer language will be used. Otherwise, the language is default to “en”.
	customer[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	customer[phone_number]
	
ITU E.123 formatted phone number, including country code.
	customer_billing_detail[address_line1]
	The first line of the customer’s address.
	customer_billing_detail[address_line2]
	The second line of the customer’s address.
	customer_billing_detail[address_line3]
	The third line of the customer’s address.
	customer_billing_detail[city]
	The city of the customer’s address.
	customer_billing_detail[country_code]
	ISO 3166-1 alpha-2 code.
	customer_billing_detail[danish_identity_number]
	For Danish customers only. The civic/company number (CPR or CVR) of the customer. Must be supplied if the customer’s bank account is denominated in Danish krone (DKK).
	customer_billing_detail[ip_address]
	For ACH customers only. Required for ACH customers. A string containing the IP address of the payer to whom the mandate belongs (i.e. as a result of their completion of a mandate setup flow in their browser).

 Not required for creating offline mandates where authorisation_source is set to telephone or paper.

	customer_billing_detail[postal_code]
	The customer’s postal code.
	customer_billing_detail[region]
	The customer’s address region, county or department. For US customers a 2 letter ISO3166-2:US state code is required (e.g. CA for California).
	customer_billing_detail[swedish_identity_number]
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer. Must be supplied if the customer’s bank account is denominated in Swedish krona (SEK). This field cannot be changed once it has been set.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_requests/BRQ123/actions/collect_customer_details HTTP/1.1
Content-Type: application/json
{
 "data": {
 "customer": {
 "email": "alice@example.com",
 "given_name": "Alice",
 "family_name": "Smith"
 },
 "customer_billing_detail": {
 "address_line1": "1 Somewhere Lane"
 }
 }
}

HTTP/1.1 200
Content-Type: application/json
{
 "billing_requests": {
 "id": "BRQ123",
 "created_at": "2021-03-22T12:20:04.397Z",
 "status": "pending",
 "mandate_request": {
 "currency": "GBP",
 "scheme": "bacs",
 "links": {}
 },
 "payment_request": {
 "description": "First Payment",
 "currency": "GBP",
 "amount": 500,
 "scheme": "faster_payments",
 "links": {}
 },
 "metadata": null,
 "links": {
 "customer": "CU123",
 "creditor": "CR123",
 "mandate_request": "MRQ123"
 },
 "creditor_name": "Mr Creditor",
 "actions": [
 {
 "type": "choose_currency",
 "required": true,
 "completes_actions": [],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "collect_customer_details",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "choose_currency"
],
 "status": "pending",
 "collect_customer_details": {
 "incomplete_fields": {
 "customer": [],
 "customer_billing_detail": [
 "address_line1",
 "city",
 "postal_code",
 "country_code"
]
 }
 }
 },
 {
 "type": "select_institution",
 "required": false,
 "completes_actions": [],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "collect_bank_account",
 "required": true,
 "completes_actions": [
 "choose_currency"
],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "bank_authorisation",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "collect_bank_account"
],
 "status": "pending"
 }
],
 "resources": {
 "customer": {
 "id": "CU123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "email": "alice@example.com",
 "given_name": "Alice",
 "family_name": "Smith",
 "company_name": null,
 "language": "en",
 "phone_number": null,
 "metadata": {}
 }
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequests()->collectCustomerDetails("BR123", [
 "params" => [
 "customer" => [
 "email" => "alice@example.com",
 "given_name" => "Alice",
 "family_name" => "Smith"
],
 "customer_billing_detail" => [
 "address_line1" => "1 Somewhere Lane"
]
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_requests.collect_customer_details("BR123", params={
 customer: {
 email: "alice@example.com",
 given_name: "Alice",
 family_name: "Smith",
 },
 customer_billing_detail: {
 address_line1: "1 Somewhere Lane"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_requests.collect_customer_details("BR123", {
 params: {
 customer: {
 email: "alice@example.com",
 given_name: "Alice",
 family_name: "Smith",
 },
 customer_billing_detail: {
 address_line1: "1 Somewhere Lane"
 }
 }
})

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.billingRequests().collectCustomerDetails("BR123")
 .withCustomerEmail("alice@example.com")
 .withCustomerGivenName("Alice")
 .withCustomerFamilyName("Smith")
 .withCustomerBillingDetailAddressLine1("1 Somewhere Lane")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const resp = await client.billingRequests.collectCustomerDetails("BR123", {
 customer: {
 email: "alice@example.com",
 given_name: "Alice",
 family_name: "Smith",
 },
 customer_billing_detail: {
 address_line1: "1 Somewhere Lane"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customer = new gocardless.BillingRequests.CollectCustomerDetailsRequest.BillingRequestCustomer
{
 Email = "alice@example.com",
 GivenName = "Alice",
 FamilyName = "Smith",
};

var customerBillingDetail = = new gocardless.BillingRequests.CollectCustomerDetailsRequest.BillingRequestCustomerBillingDetail
{
 AddressLine1 = "1 Somewhere Lane",
};

var resp = await gocardless.BillingRequests.CollectCustomerDetails("BR123",
 new BillingRequestCollectCustomerDetailsRequest
 {
 Customer = customer,
 CustomerBillingDetail = customerBillingDetail,
 });

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestCollectCustomerDetailsParams := gocardless.BillingRequestCollectCustomerDetailsParams{
 Customer: &gocardless.BillingRequestCollectCustomerDetailsParamsCustomer{
 GivenName: "Alice",
 FamilyName: "Smith",
 Email: "alice@example.com",
 },
 CustomerBillingDetail: &gocardless.BillingRequestCollectCustomerDetailsParamsCustomerBillingDetail{
 AddressLine1: "1 Somewhere Lane",
 },
 }

 billingRequest, err := client.BillingRequests.CollectCustomerDetails(context, "BR123", billingRequestCollectCustomerDetailsParams)

}

 Collect bank account details

If the billing request has a pending
collect_bank_account action, this endpoint can be
used to collect the details in order to complete it.

The endpoint takes the same payload as Customer Bank Accounts, but check
the bank account is valid for the billing request scheme before creating
and attaching it.

If the scheme is PayTo and the pay_id is available, this can be included in the payload along with the
country_code.

ACH scheme For compliance reasons, an extra validation step is done using
a third-party provider to make sure the customer’s bank account can accept
Direct Debit. If a bank account is discovered to be closed or invalid, the
customer is requested to adjust the account number/routing number and
succeed in this check to continue with the flow.

Relative endpoint: POST /billing_requests/BRQ123/actions/collect_bank_account

Restricted: this endpoint is restricted to GoCardless Pro and GoCardless Enterprise accounts with the custom payment pages upgrade.

Parameters

	account_holder_name
	Name of the account holder, as known by the bank. Usually this is the same as the name stored with the linked creditor. This field will be transliterated, upcased and truncated to 18 characters. This field is required unless the request includes a customer bank account token.
	account_number
	Bank account number - see local details for more information. Alternatively you can provide an iban.
	account_number_suffix
	Account number suffix (only for bank accounts denominated in NZD) - see local details for more information.
	account_type
	Bank account type. Required for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	bank_code
	Bank code - see local details for more information. Alternatively you can provide an iban.
	branch_code
	Branch code - see local details for more information. Alternatively you can provide an iban.
	country_code
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	iban
	International Bank Account Number. Alternatively you can provide local details. IBANs are not accepted for Swedish bank accounts denominated in SEK - you must supply local details.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	pay_id
	A unique record such as an email address, mobile number or company number, that can be used to make and accept payments.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_requests/BRQ123/actions/collect_bank_account HTTP/1.1
Content-Type: application/json
{
 "data": {
 "account_number": "55779911",
 "branch_code": "200000",
 "account_holder_name": "Frank Osborne",
 "country_code": "GB"
 }
}

HTTP/1.1 200
Content-Type: application/json
{
 "billing_requests": {
 "id": "BRQ123",
 "created_at": "2021-03-22T12:20:04.397Z",
 "status": "pending",
 "mandate_request": {
 "currency": "GBP",
 "scheme": "bacs",
 "links": {}
 },
 "payment_request": {
 "description": "First Payment",
 "currency": "GBP",
 "amount": 500,
 "scheme": "faster_payments",
 "links": {}
 },
 "metadata": null,
 "links": {
 "customer": "CU123",
 "customer_bank_account": "BA123",
 "creditor": "CR123",
 "mandate_request": "MRQ123"
 },
 "creditor_name": "Mr Creditor",
 "actions": [
 {
 "type": "choose_currency",
 "required": true,
 "completes_actions": [],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "collect_customer_details",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "choose_currency"
],
 "status": "pending",
 "collect_customer_details": {
 "incomplete_fields": {
 "customer": [
 "email",
 "given_name",
 "family_name"
],
 "customer_billing_detail": [
 "address_line1",
 "city",
 "postal_code",
 "country_code"
]
 }
 }
 },
 {
 "type": "select_institution",
 "required": false,
 "completes_actions": [],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "collect_bank_account",
 "required": true,
 "completes_actions": [
 "choose_currency"
],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "bank_authorisation",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "collect_bank_account"
],
 "status": "pending"
 }
],
 "resources": {
 "customer": {
 "id": "CU123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "email": null,
 "given_name": "Alice",
 "family_name": "Smith",
 "company_name": null,
 "language": "en",
 "phone_number": null,
 "metadata": {}
 },
 "customer_bank_account": {
 "id": "BA123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "account_holder_name": "Frank Osborne",
 "account_number_ending": "11",
 "country_code": "GB",
 "currency": "GBP",
 "bank_name": "BARCLAYS BANK PLC",
 "metadata": {},
 "enabled": true,
 "links": {
 "customer": "CU123"
 }
 }
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequests()->collectBankAccount("BR123", [
 "params" => [
 "account_number" => "55779911",
 "branch_code" => "200000",
 "account_holder_name" => "Frank Osborne",
 "country_code" => "GB"
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_requests.collect_bank_account("BR123", params={
 account_number: "55779911",
 branch_code: "200000",
 account_holder_name: "Frank Osborne",
 country_code: "GB",
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_requests.collect_bank_account("BR123", {
 params: {
 account_number: "55779911",
 branch_code: "200000",
 account_holder_name: "Frank Osborne",
 country_code: "GB",
 }
})

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.billingRequests().collectBankAccount("BR123")
 .withAccountNumber("55779911")
 .withBranchCode("200000")
 .withAccountHolderName("Frank Osborne")
 .withCountryCode("GB")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const resp = await client.billingRequests.collectBankAccount("BR123", {
 account_number: "55779911",
 branch_code: "200000",
 account_holder_name: "Frank Osborne",
 country_code: "GB",
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BillingRequests.CollectBankAccountAsync("BR123",
 new BillingRequestCollectBankAccountRequest
 {
 AccountNumber = "55779911",
 BranchCode = "200000",
 AccountHolderName = "Frank Osborne",
 CountryCode = "GB",
 });

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestCollectBankAccountParams := gocardless.BillingRequestCollectBankAccountParams{
 BranchCode: "200000",
 CountryCode: "GB",
 AccountNumber: "55779911",
 AccountHolderName: "Frank Osborne",
 }

 billingRequest, err := client.BillingRequests.CollectBankAccount(context, "BR123", billingRequestCollectBankAccountParams)

}

 Confirm the payer details

This is needed when you have a mandate request. As a scheme compliance rule we are required to
allow the payer to crosscheck the details entered by them and confirm it.

Relative endpoint: POST /billing_requests/BRQ123/actions/confirm_payer_details

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payer_requested_dual_signature
	This attribute can be set to true if the payer has indicated that multiple signatures are required for the mandate. As long as every other Billing Request actions have been completed, the payer will receive an email notification containing instructions on how to complete the additional signature. The dual signature flow can only be completed using GoCardless branded pages.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_requests/BRQ123/actions/confirm_payer_details HTTP/1.1

HTTP/1.1 200
Content-Type: application/json
{
 "billing_requests": {
 "id": "BRQ123",
 "created_at": "2021-03-22T12:20:04.397Z",
 "status": "ready_to_fulfil",
 "mandate_request": {
 "currency": "GBP",
 "scheme": "bacs",
 "links": {}
 },
 "payment_request": null
 "metadata": null,
 "links": {
 "customer": "CU123",
 "customer_bank_account": "BA123",
 "creditor": "CR123",
 "mandate_request": "MRQ123"
 },
 "creditor_name": "Mr Creditor",
 "actions": [
 {
 "type": "choose_currency",
 "required": true,
 "completes_actions": [],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "collect_customer_details",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "choose_currency"
],
 "status": "completed"
 },
 {
 "type": "collect_bank_account",
 "required": true,
 "completes_actions": [
 "choose_currency"
],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "confirm_payer_details",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "collect_customer_details",
 "collect_bank_account"
],
 "status": "completed"
 }
],
 "resources": {
 "customer": {
 "id": "CU123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "email": null,
 "given_name": "Alice",
 "family_name": "Smith",
 "company_name": null,
 "language": "en",
 "phone_number": null,
 "metadata": {}
 },
 "customer_bank_account": {
 "id": "BA123",
 "created_at": "2022-11-01T16:30:37.969Z",
 "account_number_ending": "11",
 "account_holder_name": "HOME LOAN ACCOUNT",
 "account_type": null,
 "bank_name": "BARCLAYS BANK PLC",
 "currency": "GBP",
 "country_code": "GB",
 "metadata": {},
 "enabled": true,
 "links": {
 "customer": "CU123"
 },
 "branch_code_ending": "00"
 }
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequests()->confirmPayerDetails("BR123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_requests.confirm_payer_details("BR123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_requests.confirm_payer_details("BR123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.billingRequests().confirmPayerDetails("BR123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const resp = await client.billingRequests.confirmPayerDetails("BR123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BillingRequests.ConfirmPayerDetailsAsync("BR123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 BillingRequestConfirmPayerDetailsParams := gocardless.BillingRequestConfirmPayerDetailsParams{}
 billingRequest, err := client.BillingRequests.ConfirmPayerDetails(context, "BR123", BillingRequestConfirmPayerDetailsParams)

}

 Fulfil a Billing Request

If a billing request is ready to be fulfilled, call this endpoint to cause
it to fulfil, executing the payment.

Relative endpoint: POST /billing_requests/BRQ123/actions/fulfil

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_requests/BRQ123/actions/fulfil HTTP/1.1

HTTP/1.1 200
Content-Type: application/json
{
 "billing_requests": {
 "id": "BRQ123",
 "created_at": "2021-03-22T12:20:04.397Z",
 "status": "fulfilled",
 "mandate_request": {
 "currency": "GBP",
 "scheme": "bacs",
 "links": {
 "mandate": "MD123"
 }
 },
 "payment_request": {
 "description": "First Payment",
 "currency": "GBP",
 "amount": 500,
 "scheme": "faster_payments",
 "links": {
 "payment": "PM123"
 }
 },
 "metadata": null,
 "links": {
 "customer": "CU123",
 "customer_billing_detail": "CBD123"
 },
 "creditor_name": "Mr Creditor",
 "actions": [],
 "resources": {
 "customer": {
 "id": "CU123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "email": null,
 "given_name": "Alice",
 "family_name": "Smith",
 "company_name": null,
 "language": "en",
 "phone_number": null,
 "metadata": {}
 },
 "customer_billing_detail": {
 "id": "CBD123",
 "created_at": "2021-03-22T12:20:04.374Z",
 "address_line1": "1 Somewhere Lane",
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": null,
 "swedish_identity_number": null,
 "danish_identity_number": null
 }
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequests()->fulfil("BR123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_requests.fulfil("BR123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_requests.fulfil("BR123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.billingRequests().fulfil("BR123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const resp = await client.billingRequests.fulfil("BR123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BillingRequests.FulfilAsync("BR123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestFulfilParams := gocardless.BillingRequestFulfilParams{}
 billingRequest, err := client.BillingRequests.Fulfil(context, "BR123", billingRequestFulfilParams)

}

 Cancel a Billing Request

Immediately cancels a billing request, causing all billing request flows
to expire.

Relative endpoint: POST /billing_requests/BRQ123/actions/cancel

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_requests/BRQ123/actions/cancel HTTP/1.1

HTTP/1.1 200
Content-Type: application/json
{
 "billing_requests": {
 "id": "BRQ123",
 "created_at": "2021-03-22T12:20:04.397Z",
 "status": "cancelled",
 "mandate_request": {
 "currency": "GBP",
 "scheme": "bacs",
 "links": {}
 },
 "payment_request": {
 "description": "First Payment",
 "currency": "GBP",
 "amount": 500,
 "scheme": "faster_payments",
 "links": {}
 },
 "metadata": null,
 "links": {
 "customer": "CU123",
 "customer_billing_detail": "CBD123"
 },
 "creditor_name": "Mr Creditor",
 "actions": [],
 "resources": {
 "customer": {
 "id": "CU123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "email": null,
 "given_name": "Alice",
 "family_name": "Smith",
 "company_name": null,
 "language": "en",
 "phone_number": null,
 "metadata": {}
 },
 "customer_billing_detail": {
 "id": "CBD123",
 "created_at": "2021-03-22T12:20:04.374Z",
 "address_line1": "1 Somewhere Lane",
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": null,
 "swedish_identity_number": null,
 "danish_identity_number": null
 }
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequests()->cancel("BR123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_requests.cancel("BR123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_requests.cancel("BR123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.billingRequests().cancel("BR123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const resp = await client.billingRequests.cancel("BR123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BillingRequests.CancelAsync("BR123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestCancelParams := gocardless.BillingRequestCancelParams{}
 billingRequest, err := client.BillingRequests.Fulfil(context, "BR123", billingRequestCancelParams)

}

 List Billing Requests

Returns a cursor-paginated list of your billing requests.

Relative endpoint: GET /billing_requests

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at
	Fixed timestamp, recording when this resource was created.
	customer
	ID of a customer. If specified, this endpoint will return all requests for the given customer.
	limit
	Number of records to return.
	status
	One of:

 	
 pending: the billing request is pending and can be used

	
 ready_to_fulfil: the billing request is ready to fulfil

	
 fulfilling: the billing request is currently undergoing fulfilment

	
 fulfilled: the billing request has been fulfilled and a payment created

	
 cancelled: the billing request has been cancelled and cannot be used

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/billing_requests HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 },
 "billing_requests": [
 {
 "id": "BRQ123",
 "created_at": "2021-03-22T16:23:48.486Z",
 "status": "pending",
 "mandate_request": null,
 "payment_request": {
 "description": "£5 Top Up",
 "currency": "GBP",
 "amount": 500,
 "scheme": "faster_payments",
 "links": {}
 },
 "metadata": null,
 "links": {
 "customer": "CU123",
 "customer_billing_detail": "CBD123",
 "customer_bank_account": "BA123"
 }
 }
]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequests()->list();

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_requests.list().records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_requests.list

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (BillingRequest billingRequest : client.billingRequests().all().execute()) {
 System.out.println(billingRequest.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const billingRequests = await client.billingRequests.list();

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var billingRequestListResponse = gocardless.BillingRequests.All();
foreach (GoCardless.Resources.BillingRequest billingRequest in billingRequestListResponse)
{
 Console.WriteLine(billingRequest.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestListParams := gocardless.BillingRequestListParams{}
 billingRequestListResult, err := client.BillingRequests.List(context, billingRequestListParams)
 for _, billingRequest := range billingRequestListResult.BillingRequests {
 fmt.Println(billingRequest.Id)
 }

}

 Get a single Billing Request

Fetches a billing request

Relative endpoint: GET /billing_requests/BRQ123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/billing_requests/BRQ123 HTTP/1.1

HTTP/1.1 200
Content-Type: application/json
{
 "billing_requests": {
 "id": "BRQ123",
 "created_at": "2021-03-22T12:20:04.397Z",
 "status": "pending",
 "mandate_request": {
 "currency": "GBP",
 "scheme": "bacs",
 "links": {}
 },
 "payment_request": {
 "description": "First Payment",
 "currency": "GBP",
 "amount": 500,
 "scheme": "faster_payments",
 "links": {}
 },
 "metadata": null,
 "links": {
 "customer": "CU123",
 "customer_billing_detail": "CBD123"
 },
 "creditor_name": "Mr Creditor",
 "actions": [
 {
 "type": "choose_currency",
 "required": true,
 "completes_actions": [],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "collect_customer_details",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "choose_currency"
],
 "status": "pending",
 "collect_customer_details": {
 "incomplete_fields": {
 "customer": [
 "email",
 "given_name",
 "family_name"
],
 "customer_billing_detail": [
 "address_line1",
 "city",
 "postal_code",
 "country_code"
]
 }
 }
 },
 {
 "type": "select_institution",
 "required": false,
 "completes_actions": [],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "collect_bank_account",
 "required": true,
 "completes_actions": [
 "choose_currency"
],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "bank_authorisation",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "collect_bank_account"
],
 "status": "pending"
 }
],
 "resources": {
 "customer": {
 "id": "CU123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "email": null,
 "given_name": null,
 "family_name": null,
 "company_name": null,
 "language": "en",
 "phone_number": null,
 "metadata": {}
 },
 "customer_billing_detail": {
 "id": "CBD123",
 "created_at": "2021-03-22T12:20:04.374Z",
 "address_line1": null,
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": null,
 "swedish_identity_number": null,
 "danish_identity_number": null
 }
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequests()->get("BR123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_requests.get("BR123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_requests.get("BR123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.billingRequests().get("BR123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const resp = await client.billingRequests.find("BR123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BillingRequests.GetAsync("BR123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequest, err := client.BillingRequests.Get(context, "BR123")

}

 Notify the customer

Notifies the customer linked to the billing request, asking them to authorise it.
Currently, the customer can only be notified by email.

This endpoint is currently supported only for Instant Bank Pay Billing Requests.

Relative endpoint: POST /billing_requests/BRQ123/actions/notify

Parameters

	notification_type
	
required Currently, can only be email.
	redirect_uri
	URL that the payer can be redirected to after authorising the payment.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_requests/BRQ123/actions/notify HTTP/1.1
Content-Type: application/json
{
 "data": {
 "notification_type": "email",
 "redirect_uri": "https://my-company.com"
 }
}

HTTP/1.1 200
Content-Type: application/json
{
 "billing_requests": {
 "id": "BRQ123",
 "created_at": "2021-03-22T12:20:04.397Z",
 "status": "pending",
 "mandate_request": {
 "currency": "GBP",
 "scheme": "bacs",
 "links": {}
 },
 "payment_request": {
 "description": "First Payment",
 "currency": "GBP",
 "amount": 500,
 "scheme": "faster_payments",
 "links": {}
 },
 "metadata": null,
 "links": {
 "customer": "CU123",
 "customer_billing_detail": "CBD123"
 },
 "creditor_name": "Mr Creditor",
 "actions": [
 {
 "type": "choose_currency",
 "required": true,
 "completes_actions": [],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "collect_customer_details",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "choose_currency"
],
 "status": "pending",
 "collect_customer_details": {
 "incomplete_fields": {
 "customer": [
 "email",
 "given_name",
 "family_name"
],
 "customer_billing_detail": [
 "address_line1",
 "city",
 "postal_code",
 "country_code"
]
 }
 }
 },
 {
 "type": "select_institution",
 "required": false,
 "completes_actions": [],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "collect_bank_account",
 "required": true,
 "completes_actions": [
 "choose_currency"
],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "bank_authorisation",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "collect_bank_account"
],
 "status": "pending"
 }
],
 "resources": {
 "customer": {
 "id": "CU123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "email": null,
 "given_name": "Alice",
 "family_name": "Smith",
 "company_name": null,
 "language": "en",
 "phone_number": null,
 "metadata": {}
 },
 "customer_billing_detail": {
 "id": "CBD123",
 "created_at": "2021-03-22T12:20:04.374Z",
 "address_line1": "1 Somewhere Lane",
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": null,
 "swedish_identity_number": null,
 "danish_identity_number": null
 }
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequests()->notify("BR123", [
 "params" => [
 "notification_type" => "email",
 "redirect_uri" => "https://my-company.com"
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_requests.notify("BR123", params={
 notification_type: "email",
 redirect_uri: "https://my-company.com",
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_requests.notify("BR123", {
 params: {
 notification_type: "email",
 redirect_uri: "https://my-company.com",
 }
})

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.billingRequests().notify("BR123")
 .withNotificationType("email")
 .withRedirectUri("https://my-company.com")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const resp = await client.billingRequests.notify("BR123", {
 notification_type: "email",
 redirect_uri: "https://my-company.com",
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BillingRequests.NotifyAsync("BR123",
 new BillingRequestNotifyRequest
 {
 NotificationType = "email",
 RedirectUri = "https://my-company.com",
 });

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestNotifyParams := gocardless.BillingRequestNotifyParams{
 NotificationType: "email",
 RedirectUri: "https://my-company.com",
 }

 billingRequest, err := client.BillingRequests.Fulfil(context, "BR123", billingRequestNotifyParams)

}

 Trigger fallback

Triggers a fallback from the open-banking flow to direct debit. Note, the billing request must have fallback enabled.

Relative endpoint: POST /billing_requests/BRQ123/actions/fallback

Restricted: this endpoint is restricted to GoCardless Pro and GoCardless Enterprise accounts with the custom payment pages upgrade.

Parameters

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_requests/BRQ123/actions/fallback HTTP/1.1

HTTP/1.1 200
Content-Type: application/json
{
 "billing_requests": {
 "id": "BRQ123",
 "created_at": "2021-03-22T12:20:04.397Z",
 "status": "pending",
 "mandate_request": {
 "currency": "GBP",
 "scheme": "bacs",
 "links": {}
 },
 "payment_request": {
 "description": "First Payment",
 "currency": "GBP",
 "amount": 500,
 "scheme": "bacs",
 "links": {}
 },
 "metadata": null,
 "links": {
 "customer": "CU123",
 "customer_billing_detail": "CBD123"
 },
 "creditor_name": "Mr Creditor",
 "actions": [
 {
 "type": "choose_currency",
 "required": true,
 "completes_actions": [],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "collect_customer_details",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "choose_currency"
],
 "status": "pending",
 "collect_customer_details": {
 "incomplete_fields": {
 "customer": [
 "email",
 "given_name",
 "family_name"
],
 "customer_billing_detail": [
 "address_line1",
 "city",
 "postal_code",
 "country_code"
]
 }
 }
 },
 {
 "type": "select_institution",
 "required": false,
 "completes_actions": [],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "collect_bank_account",
 "required": true,
 "completes_actions": [
 "choose_currency"
],
 "requires_actions": [],
 "status": "pending"
 }
],
 "resources": {
 "customer": {
 "id": "CU123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "email": null,
 "given_name": "Alice",
 "family_name": "Smith",
 "company_name": null,
 "language": "en",
 "phone_number": null,
 "metadata": {}
 },
 "customer_billing_detail": {
 "id": "CBD123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "address_line1": null,
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": null,
 "swedish_identity_number": null,
 "danish_identity_number": null
 }
 },
 "fallback_enabled": true,
 "fallback_occurred": true
 }
}

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 Change currency

This will allow for the updating of the currency and subsequently the scheme if
needed for a Billing Request. This will only be available for mandate only flows
which do not have the lock_currency flag set to true on the Billing Request Flow. It
will also not support any request which has a payments request.

Relative endpoint: POST /billing_requests/BRQ123/actions/choose_currency

Parameters

	currency
	
required ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 Select institution for a Billing Request

Creates an Institution object and attaches it to the Billing Request

Relative endpoint: POST /billing_requests/BRQ123/actions/select_institution

Restricted: this endpoint is restricted to GoCardless Pro and GoCardless Enterprise accounts with the custom payment pages upgrade.

Parameters

	country_code
	
required ISO 3166-1 alpha-2 code. The country code of the institution.
	institution
	
required The unique identifier for this institution

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_requests/BRQ123/actions/select_institution HTTP/1.1
Content-Type: application/json
{
 "data": {
 "institution": "monzo",
 "country_code": "GB"
 }
}

HTTP/1.1 200
Content-Type: application/json
{
 "billing_requests": {
 "id": "BRQ123",
 "created_at": "2021-03-22T12:20:04.397Z",
 "status": "pending",
 "mandate_request": {
 "currency": "GBP",
 "scheme": "bacs",
 "links": {}
 },
 "payment_request": {
 "description": "First Payment",
 "currency": "GBP",
 "amount": 500,
 "scheme": "faster_payments",
 "links": {}
 },
 "metadata": null,
 "links": {
 "customer": "CU123",
 "customer_billing_detail": "CBD123"
 },
 "creditor_name": "Mr Creditor",
 "actions": [
 {
 "type": "choose_currency",
 "required": true,
 "completes_actions": [],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "collect_customer_details",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "choose_currency"
],
 "status": "pending",
 "collect_customer_details": {
 "incomplete_fields": {
 "customer": [
 "email",
 "given_name",
 "family_name"
],
 "customer_billing_detail": [
 "address_line1",
 "city",
 "postal_code",
 "country_code"
]
 }
 }
 },
 {
 "type": "select_institution",
 "required": false,
 "completes_actions": [],
 "requires_actions": [],
 "status": "completed"
 },
 {
 "type": "collect_bank_account",
 "required": true,
 "completes_actions": [
 "choose_currency"
],
 "requires_actions": [],
 "status": "pending"
 },
 {
 "type": "bank_authorisation",
 "required": true,
 "completes_actions": [],
 "requires_actions": [
 "collect_bank_account"
],
 "status": "pending"
 }
],
 "resources": {
 "customer": {
 "id": "CU123",
 "created_at": "2021-03-22T12:20:04.238Z",
 "email": null,
 "given_name": "Alice",
 "family_name": "Smith",
 "company_name": null,
 "language": "en",
 "phone_number": null,
 "metadata": {}
 },
 "customer_billing_detail": {
 "id": "CBD123",
 "created_at": "2021-03-22T12:20:04.374Z",
 "address_line1": "1 Somewhere Lane",
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": null,
 "swedish_identity_number": null,
 "danish_identity_number": null
 },
 "institution": {
 "id": "monzo",
 "name": "Monzo",
 "icon_url": "https://images.yapily.com/image/332bb781-3cc2-4f3e-ae79-1aba09fac991?size",
 "roles": ["institutions_list", "heartbeat", "read_refund_account", "read_debtor_account"],
 "country_code": "GB"
 }
 }
 }
}

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 Billing Request Flows

Billing Request Flows can be created to enable a payer to authorise a payment created for a scheme with strong payer
authorisation (such as open banking single payments).

Properties

	id
	Unique identifier, beginning with “BRF”.
	authorisation_url
	URL for a GC-controlled flow which will allow the payer to fulfil the billing request
	auto_fulfil
	(Experimental feature) Fulfil the Billing Request on completion of the flow (true by default). Disabling the auto_fulfil is not allowed currently.
	created_at
	Timestamp when the flow was created
	customer_details_captured
	Identifies whether a Billing Request belongs to a specific customer
	exit_uri
	URL that the payer can be taken to if there isn’t a way to progress ahead in flow.
	expires_at
	Timestamp when the flow will expire. Each flow currently lasts for 7 days.
	language
	Sets the default language of the Billing Request Flow and the customer. ISO 639-1 code.
	lock_bank_account
	If true, the payer will not be able to change their bank account within the flow. If the bank_account details are collected as part of bank_authorisation then GC will set this value to true mid flow.

 You can only lock bank account if these have already been completed as a part of the billing request.

	lock_currency
	If true, the payer will not be able to change their currency/scheme manually within the flow. Note that this only applies to the mandate only flows - currency/scheme can never be changed when there is a specified subscription or payment.
	lock_customer_details
	If true, the payer will not be able to edit their customer details within the flow. If the customer details are collected as part of bank_authorisation then GC will set this value to true mid flow.

 You can only lock customer details if these have already been completed as a part of the billing request.

	prefilled_bank_account[account_type]
	Bank account type for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	prefilled_customer[address_line1]
	The first line of the customer’s address.
	prefilled_customer[address_line2]
	The second line of the customer’s address.
	prefilled_customer[address_line3]
	The third line of the customer’s address.
	prefilled_customer[city]
	The city of the customer’s address.
	prefilled_customer[company_name]
	Customer’s company name. Company name should only be provided if given_name and family_name are null.
	prefilled_customer[country_code]
	ISO 3166-1 alpha-2 code.
	prefilled_customer[danish_identity_number]
	For Danish customers only. The civic/company number (CPR or CVR) of the customer.
	prefilled_customer[email]
	Customer’s email address.
	prefilled_customer[family_name]
	Customer’s surname.
	prefilled_customer[given_name]
	Customer’s first name.
	prefilled_customer[postal_code]
	The customer’s postal code.
	prefilled_customer[region]
	The customer’s address region, county or department.
	prefilled_customer[swedish_identity_number]
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer.
	redirect_uri
	URL that the payer can be redirected to after completing the request flow.
	session_token
	Session token populated when responding to the initialise action
	show_redirect_buttons
	If true, the payer will be able to see redirect action buttons on Thank You page. These action buttons will provide a way to connect back to the billing request flow app if opened within a mobile app. For successful flow, the button will take the payer back the billing request flow where they will see the success screen. For failure, button will take the payer to url being provided against exit_uri field.
	show_success_redirect_button
	If true, the payer will be able to see a redirect action button on the Success page. This action button will provide a way to redirect the payer to the given redirect_uri. This functionality is helpful when merchants do not want payers to be automatically redirected or on Android devices, where automatic redirections are not possible.
	links[billing_request]
	ID of the billing request against which this flow was created.

 Create a Billing Request Flow

Creates a new billing request flow.

Relative endpoint: POST /billing_request_flows

Parameters

	auto_fulfil
	(Experimental feature) Fulfil the Billing Request on completion of the flow (true by default). Disabling the auto_fulfil is not allowed currently.
	customer_details_captured
	Identifies whether a Billing Request belongs to a specific customer
	exit_uri
	URL that the payer can be taken to if there isn’t a way to progress ahead in flow.
	language
	Sets the default language of the Billing Request Flow and the customer. ISO 639-1 code.
	lock_bank_account
	If true, the payer will not be able to change their bank account within the flow. If the bank_account details are collected as part of bank_authorisation then GC will set this value to true mid flow.

 You can only lock bank account if these have already been completed as a part of the billing request.

	lock_currency
	If true, the payer will not be able to change their currency/scheme manually within the flow. Note that this only applies to the mandate only flows - currency/scheme can never be changed when there is a specified subscription or payment.
	lock_customer_details
	If true, the payer will not be able to edit their customer details within the flow. If the customer details are collected as part of bank_authorisation then GC will set this value to true mid flow.

 You can only lock customer details if these have already been completed as a part of the billing request.

	prefilled_bank_account[account_type]
	Bank account type for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	prefilled_customer[address_line1]
	The first line of the customer’s address.
	prefilled_customer[address_line2]
	The second line of the customer’s address.
	prefilled_customer[address_line3]
	The third line of the customer’s address.
	prefilled_customer[city]
	The city of the customer’s address.
	prefilled_customer[company_name]
	Customer’s company name. Company name should only be provided if given_name and family_name are null.
	prefilled_customer[country_code]
	ISO 3166-1 alpha-2 code.
	prefilled_customer[danish_identity_number]
	For Danish customers only. The civic/company number (CPR or CVR) of the customer.
	prefilled_customer[email]
	Customer’s email address.
	prefilled_customer[family_name]
	Customer’s surname.
	prefilled_customer[given_name]
	Customer’s first name.
	prefilled_customer[postal_code]
	The customer’s postal code.
	prefilled_customer[region]
	The customer’s address region, county or department.
	prefilled_customer[swedish_identity_number]
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer.
	redirect_uri
	URL that the payer can be redirected to after completing the request flow.
	show_redirect_buttons
	If true, the payer will be able to see redirect action buttons on Thank You page. These action buttons will provide a way to connect back to the billing request flow app if opened within a mobile app. For successful flow, the button will take the payer back the billing request flow where they will see the success screen. For failure, button will take the payer to url being provided against exit_uri field.
	show_success_redirect_button
	If true, the payer will be able to see a redirect action button on the Success page. This action button will provide a way to redirect the payer to the given redirect_uri. This functionality is helpful when merchants do not want payers to be automatically redirected or on Android devices, where automatic redirections are not possible.
	links[billing_request]
	
required ID of the billing request against which this flow was created.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_request_flows HTTP/1.1
Content-Type: application/json
{
 "billing_request_flows": {
 "redirect_uri": "https://my-company.com/landing",
 "exit_uri": "https://my-company.com/exit",
 "prefilled_customer": {
 "given_name": "Frank",
 "family_name": "Osborne",
 "email": "frank.osborne@acmeplc.com"
 },
 "links": {
 "billing_request": "BRQ123"
 }
 }
}

HTTP/1.1 201 Created
Location: /billing_request_flows/BRF123456
Content-Type: application/json
{
 "billing_request_flows": {
 "id": "BRF123456",
 "auto_fulfil": true,
 "redirect_uri": "https://my-company.com/landing",
 "exit_uri": "https://my-company.com/exit",
 "authorisation_url": "https://pay.gocardless.com/billing/static/flow?id=BRF123456",
 "lock_customer_details": false,
 "lock_currency": false,
 "lock_bank_account": false,
 "session_token": null,
 "expires_at": "2021-07-30T16:25:16.982Z",
 "created_at": "2021-07-23T16:25:16.983Z",
 "links": {
 "billing_request": "BRQ123"
 },
 "show_redirect_buttons": false,
 "show_success_redirect_button": false,
 "customer_details_captured": false,
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequestFlows()->create([
 "params" => [
 "redirect_uri" => "https://my-company.com/landing",
 "exit_uri" => "https://my-company.com/exit",
 "prefilled_customer" => [
 "given_name" => "Frank",
 "family_name" => "Osborne",
 "email" => "frank.osborne@acmeplc.com"
],
 "links" => [
 "billing_request" => "BRQ123"
]
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_request_flows.create(params={
 "redirect_uri": "https://my-company.com/landing",
 "exit_uri": "https://my-company.com/exit",
 "prefilled_customer": {
 "given_name": "Frank",
 "family_name": "Osborne",
 "email": "frank.osborne@acmeplc.com"
 },
 "links": {
 "billing_request": "BRQ123"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_request_flows.create(
 params: {
 redirect_uri: "https://my-company.com/landing",
 exit_uri: "https://my-company.com/exit",
 prefilled_customer: {
 given_name: "Frank",
 family_name: "Osborne",
 email: "frank.osborne@acmeplc.com"
 },
 links: {
 billing_request: "BRQ123",
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

BillingRequestFlow billingRequestFlow = client.billingRequestFlows().create()
 .withRedirectUri("https://my-company.com/landing")
 .withExitUri("https://my-company.com/exit")
 .withPrefilledCustomerGivenName("Frank")
 .withPrefilledCustomerFamilyName("Osborne")
 .withPrefilledCustomerEmail("frank.osborne@acmeplc.com")
 .withLinksBillingRequest("BRQ123")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const billingRequestFlow = await client.billingRequestFlows.create({
 redirect_uri: "https://my-company.com/landing",
 exit_uri: "https://my-company.com/exit",
 prefilled_customer: {
 given_name: "Frank",
 family_name: "Osborne",
 email: "frank.osborne@acmeplc.com"
 },
 links: {
 billing_request: "BRQ123",
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var prefilledCustomer = new GoCardless.Services.RedirectFlowCreateRequest.RedirectFlowPrefilledCustomer()
{
 AddressLine1 = "338 Goswell Road",
 Email = "api@gocardless.com",
 GivenName = "Bobby",
 FamilyName = "Tables"
};

var resp = await gocardless.BillingRequestFlows.CreateAsync(
 new GoCardless.Services.BillingRequestFlowCreateRequest()
 {
 RedirectUri = "https://my-company.com/landing",
 ExitUri = "https://my-company.com/exit",
 PrefilledCustomer = prefilledCustomer,
 Links = new gocardless.BillingRequestFlowCreateRequest.BillingRequestFlowLinks
 {
 BillingRequest = "BRQ123",
 },
 }
);

GoCardless.Resources.BillingRequestFlow billingRequestFlow = resp.BillingRequestFlow;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestFlowCreateParams := gocardless.BillingRequestFlowCreateParams{
 RedirectUri: "https://my-company.com/landing",
 ExitUri: "https://my-company.com/exit",
 PrefilledCustomer: &gocardless.RedirectFlowCreateParamsPrefilledCustomer{
 AddressLine1: "338-346 Goswell Road",
 City: "London",
 GivenName: "Tim",
 FamilyName: "Rogers",
 Email: "tim@gocardless.com",
 PostalCode: "EC1V 7LQ",
 },
 Links: gocardless.BillingRequestFlowCreateParamsLinks{
 BillingRequest: "BR123",
 },
 }

 billingRequestFlow, err := client.BillingRequestFlows.Create(context, billingRequestFlowCreateParams)

}

 Initialise a Billing Request Flow

Returns the flow having generated a fresh session token which can be used to power
integrations that manipulate the flow.

Relative endpoint: POST /billing_request_flows/BRF123/actions/initialise

Parameters

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_request_flows/BRF123/actions/initialise HTTP/1.1

HTTP/1.1 200
Content-Type: application/json
{
 "billing_request_flows":{
 "id":"BRF123",
 "auto_fulfil":true,
 "redirect_uri":null,
 "exit_uri":null,
 "authorisation_url":"https://pay-sandbox.gocardless.com/billing/static/flow?id=BRF123",
 "lock_customer_details":false,
 "lock_bank_account":false,
 "lock_currency": false,
 "session_token":"sesh_sandbox_DHTMvJAUajbd9KTCoXNFcTv4RSoWdMbauhnalxiqwbdsb",
 "expires_at":"2021-09-01T08:45:38.016Z",
 "created_at":"2021-08-25T08:45:38.017Z",
 "links":{
 "billing_request":"BRQ123"
 },
 "show_redirect_buttons": false,
 "show_success_redirect_button": false,
 "customer_details_captured": false,
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequestFlows()->initialise("BRF123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_request_flows.initialise("BRF123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_request_flows.initialise("BRF123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.billingRequestFlows().initialise("BRF123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const resp = await client.billingRequestFlows.initialise("BRF123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BillingRequestFlows.InitialiseAsync("BRF123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestFlowInitialiseParams := gocardless.BillingRequestFlowInitialiseParams{}
 billingRequestFlow, err := client.BillingRequestFlows.Initialise(context, "BRF123", billingRequestFlowInitialiseParams)

}

 Billing Request Templates

Billing Request Templates are reusable templates that result in
numerous Billing Requests with similar attributes. They provide
a no-code solution for generating various types of multi-user payment links.

Each template includes a reusable URL that can be embedded in a website
or shared with customers via email. Every time the URL is opened,
it generates a new Billing Request.

Billing Request Templates overcome the key limitation of the Billing Request:
a Billing Request cannot be shared among multiple users because it is intended
for single-use and is designed to cater to the unique needs of individual customers.

Properties

	id
	Unique identifier, beginning with “BRT”.
	authorisation_url
	Permanent URL that customers can visit to allow them to complete a flow based on this template, before being returned to the redirect_uri.
	created_at
	Fixed timestamp, recording when this resource was created.
	mandate_request_currency
	
ISO 4217 currency code.
	mandate_request_description
	A human-readable description of the payment and/or mandate. This will be displayed to the payer when authorising the billing request.
	mandate_request_metadata
	Key-value store of custom data that will be applied to the mandate created when this request is fulfilled. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	mandate_request_scheme
	A bank payment scheme. Currently “ach”, “autogiro”, “bacs”, “becs”, “becs_nz”, “betalingsservice”, “faster_payments”, “pad”, “pay_to” and “sepa_core” are supported. Optional for mandate only requests - if left blank, the payer will be able to select the currency/scheme to pay with from a list of your available schemes.
	mandate_request_verify
	Verification preference for the mandate. One of:

 	
 minimum: only verify if absolutely required, such as when part of scheme rules

	
 recommended: in addition to minimum, use the GoCardless payment intelligence solution to decide if a payer should be verified

	
 when_available: if verification mechanisms are available, use them

	
 always: as when_available, but fail to create the Billing Request if a mechanism isn’t available

By default, all Billing Requests use the recommended verification preference. It uses GoCardless payment intelligence solution to determine if a payer is fraudulent or not. The verification mechanism is based on the response and the payer may be asked to verify themselves. If the feature is not available, recommended behaves like minimum.

If you never wish to take advantage of our reduced risk products and Verified Mandates as they are released in new schemes, please use the minimum verification preference.

See Billing Requests: Creating Verified Mandates
 for more information.

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	name
	Name for the template. Provides a friendly human name for the template, as it is shown in the dashboard. Must not exceed 255 characters.
	payment_request_amount
	Amount in minor unit (e.g. pence in GBP, cents in EUR).
	payment_request_currency
	
ISO 4217 currency code. GBP and EUR supported; GBP with your customers in the UK and for EUR with your customers in Germany only.
	payment_request_description
	A human-readable description of the payment and/or mandate. This will be displayed to the payer when authorising the billing request.
	payment_request_metadata
	Key-value store of custom data that will be applied to the payment created when this request is fulfilled. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payment_request_scheme
	(Optional) A scheme used for Open Banking payments. Currently faster_payments is supported in the UK (GBP) and sepa_credit_transfer and sepa_instant_credit_transfer are supported in Germany (EUR). In Germany, sepa_credit_transfer is used as the default. Please be aware that sepa_instant_credit_transfer may incur an additional fee for your customer.
	redirect_uri
	URL that the payer can be redirected to after completing the request flow.
	updated_at
	Dynamic timestamp recording when this resource was last updated.

 List Billing Request Templates

Returns a cursor-paginated list of your Billing Request Templates.

Relative endpoint: GET /billing_request_templates

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	limit
	Number of records to return.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/billing_request_templates HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 },
 "billing_request_templates": [
 {
 "id": "BRT123",
 "name": "12 Month Gold Plan",
 "mandate_request_currency": "GBP",
 "mandate_request_scheme": null,
 "mandate_request_verify": null,
 "mandate_request_metadata": null,
 "payment_request_description": "One-time joining fee",
 "mandate_request_description": "Recurring fee",
 "payment_request_amount": "69.99",
 "payment_request_currency": "GBP",
 "payment_request_scheme": null,
 "payment_request_metadata": null,
 "redirect_uri": "https://my-company.com/landing",
 "authorisation_url": "https://pay.gocardless.com/BRT123",
 "metadata": {
 "checkout-flow": "primary"
 },
 "created_at": "2021-07-27T17:10:33.784Z",
 "updated_at": "2021-07-27T17:10:33.784Z"
 }
]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequestTemplates()->list();

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_request_templates.list().records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_request_templates.list

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (BillingRequestTemplate billingRequestTemplate : client.billingRequestTemplates().all().execute()) {
 System.out.println(billingRequestTemplate.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const billingRequestTemplates = await client.billingRequestTemplates.list();

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var billingRequestTemplateListResponse = gocardless.BillingRequestTemplates.All();
foreach (GoCardless.Resources.BillingRequestTemplate billingRequestTemplate in billingRequestTemplateListResponse)
{
 Console.WriteLine(billingRequestTemplate.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestTemplateListParams := gocardless.BillingRequestTemplateListParams{}
 billingRequestTemplateListResult, err := client.BillingRequestTemplates.List(context, billingRequestTemplateListParams)
 for _, billingRequestTemplate := range billingRequestTemplateListResult.BillingRequestTemplates {
 fmt.Println(billingRequestTemplate.Id)
 }

}

 Get a single Billing Request Template

Fetches a Billing Request Template

Relative endpoint: GET /billing_request_templates/BRT123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/billing_request_templates/BRT123 HTTP/1.1

HTTP/1.1 200
Content-Type: application/json
{
 "billing_request_templates": {
 "id": "BRT123",
 "name": "12 Month Gold Plan",
 "mandate_request_currency": "GBP",
 "mandate_request_scheme": null,
 "mandate_request_verify": null,
 "mandate_request_metadata": null,
 "payment_request_description": "One-time joining fee",
 "mandate_request_description": "Recurring fee",
 "payment_request_amount": "69.99",
 "payment_request_currency": "GBP",
 "payment_request_scheme": null,
 "payment_request_metadata": null,
 "redirect_uri": "https://my-company.com/landing",
 "authorisation_url": "https://pay.gocardless.com/BRT123",
 "metadata": {
 "checkout-flow": "primary"
 },
 "created_at": "2021-07-27T17:10:33.784Z",
 "updated_at": "2021-07-27T17:10:33.784Z"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequestTemplates()->get("BRT123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_request_templates.get("BRT123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_request_templates.get("BRT123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.billingRequestTemplates().get("BRT123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const resp = await client.billingRequestTemplates.find("BRT123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BillingRequestTemplates.GetAsync("BRT123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestTemplate, err := client.BillingRequestTemplates.Get(context, "BRT123")

}

 Create a Billing Request Template

Relative endpoint: POST /billing_request_templates

Parameters

	mandate_request_currency
	
ISO 4217 currency code.
	mandate_request_description
	A human-readable description of the payment and/or mandate. This will be displayed to the payer when authorising the billing request.
	mandate_request_metadata
	Key-value store of custom data that will be applied to the mandate created when this request is fulfilled. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	mandate_request_scheme
	A bank payment scheme. Currently “ach”, “autogiro”, “bacs”, “becs”, “becs_nz”, “betalingsservice”, “faster_payments”, “pad”, “pay_to” and “sepa_core” are supported. Optional for mandate only requests - if left blank, the payer will be able to select the currency/scheme to pay with from a list of your available schemes.
	mandate_request_verify
	Verification preference for the mandate. One of:

 	
 minimum: only verify if absolutely required, such as when part of scheme rules

	
 recommended: in addition to minimum, use the GoCardless payment intelligence solution to decide if a payer should be verified

	
 when_available: if verification mechanisms are available, use them

	
 always: as when_available, but fail to create the Billing Request if a mechanism isn’t available

By default, all Billing Requests use the recommended verification preference. It uses GoCardless payment intelligence solution to determine if a payer is fraudulent or not. The verification mechanism is based on the response and the payer may be asked to verify themselves. If the feature is not available, recommended behaves like minimum.

If you never wish to take advantage of our reduced risk products and Verified Mandates as they are released in new schemes, please use the minimum verification preference.

See Billing Requests: Creating Verified Mandates
 for more information.

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	name
	Name for the template. Provides a friendly human name for the template, as it is shown in the dashboard. Must not exceed 255 characters.
	payment_request_amount
	Amount in minor unit (e.g. pence in GBP, cents in EUR).
	payment_request_currency
	
ISO 4217 currency code. GBP and EUR supported; GBP with your customers in the UK and for EUR with your customers in Germany only.
	payment_request_description
	A human-readable description of the payment and/or mandate. This will be displayed to the payer when authorising the billing request.
	payment_request_metadata
	Key-value store of custom data that will be applied to the payment created when this request is fulfilled. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payment_request_scheme
	(Optional) A scheme used for Open Banking payments. Currently faster_payments is supported in the UK (GBP) and sepa_credit_transfer and sepa_instant_credit_transfer are supported in Germany (EUR). In Germany, sepa_credit_transfer is used as the default. Please be aware that sepa_instant_credit_transfer may incur an additional fee for your customer.
	redirect_uri
	URL that the payer can be redirected to after completing the request flow.
	links[creditor]
	ID of the associated creditor. Only required if your account manages multiple creditors.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/billing_request_templates HTTP/1.1
Content-Type: application/json
{
 "billing_request_templates": {
 "name": "12 Month Gold Plan",
 "payment_request_description": "One-time joining fee",
 "mandate_request_description": "Recurring fee",
 "payment_request_currency": "GBP",
 "payment_request_amount": "69.99",
 "mandate_request_currency": "GBP",
 "redirect_uri": "https://my-company.com/landing",
 "metadata": {
 "checkout-flow": "primary"
 }
 }
}

HTTP/1.1 201 Created
Location: /billing_request_templates/BRT123
Content-Type: application/json
{
 "billing_request_templates": {
 "id": "BRT123",
 "name": "12 Month Gold Plan",
 "mandate_request_currency": "GBP",
 "mandate_request_scheme": null,
 "mandate_request_verify": null,
 "mandate_request_metadata": null,
 "payment_request_description": "One-time joining fee",
 "mandate_request_description": "Recurring fee",
 "payment_request_amount": "69.99",
 "payment_request_currency": "GBP",
 "payment_request_scheme": null,
 "payment_request_metadata": null,
 "redirect_uri": "https://my-company.com/landing",
 "authorisation_url": "https://pay.gocardless.com/BRT123",
 "metadata": {
 "checkout-flow": "primary"
 },
 "created_at": "2021-07-27T17:10:33.784Z",
 "updated_at": "2021-07-27T17:10:33.784Z"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequestTemplates()->create([
 "params" => [
 "name" => "12 Month Gold Plan",
 "payment_request_description" => "One-time joining fee",
 "mandate_request_description" => "Recurring fee",
 "payment_request_currency" => "GBP",
 "payment_request_amount" => "69.99",
 "mandate_request_currency" => "GBP",
 "redirect_uri" => "https://my-company.com/landing",
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_request_templates.create(params={
 "name": "12 Month Gold Plan",
 "payment_request_description": "One-time joining fee",
 "mandate_request_description": "Recurring fee",
 "payment_request_currency": "GBP",
 "payment_request_amount": "69.99",
 "mandate_request_currency": "GBP",
 "redirect_uri": "https://my-company.com/landing",
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_request_templates.create(
 params: {
 name: "12 Month Gold Plan",
 payment_request_description: "One-time joining fee",
 mandate_request_description: "Recurring fee",
 payment_request_currency: "GBP",
 payment_request_amount: "69.99",
 mandate_request_currency: "GBP",
 redirect_uri: "https://my-company.com/landing",
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

BillingRequestTemplate billingRequestTemplate = client.billingRequestTemplates().create()
 .withPaymentRequestDescription("One-time joining fee")
 .withPaymentRequestCurrency("GBP")
 .withPaymentRequestAmount("69.99")
 .withMandateRequestCurrency("GBP")
 .withRedirectUri("https://my-company.com/landing")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const billingRequestTemplate = await client.billingRequestTemplates.create({
 name: "12 Month Gold Plan",
 payment_request_description: "One-time joining fee",
 mandate_request_description: "Recurring fee",
 payment_request_currency: "GBP",
 payment_request_amount: "69.99",
 mandate_request_currency: "GBP",
 redirect_uri: "https://my-company.com/landing",
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BillingRequestTemplates.CreateAsync(
 new GoCardless.Services.BillingRequestTemplateCreateRequest()
 {
 PaymentRequestDescription = "One-time joining fee",
 PaymentRequestCurrency = "GBP",
 PaymentRequestAmount = 6999,
 MandateRequestCurrency = "GBP",
 RedirectUri = "https://my-company.com/landing",
 }
);

GoCardless.Resources.BillingRequestTemplate billingRequestTemplate = resp.BillingRequestTemplate;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestTemplateCreateParams := gocardless.BillingRequestTemplateCreateParams{
 Name: "12 Month Gold Plan",
 PaymentRequestDescription: "One-time joining fee",
 PaymentRequestCurrency: "GBP",
 PaymentRequestAmount: 6999,
 MandateRequestCurrency: "GBP",
 RedirectUri: "https://my-company.com/landing",
 }

 billingRequestTemplate, err := client.BillingRequestTemplates.Create(context, billingRequestTemplateCreateParams)

}

 Update a Billing Request Template

Updates a Billing Request Template, which will affect all future Billing Requests created by this template.

Relative endpoint: PUT /billing_request_templates/BRQ123

Parameters

	mandate_request_currency
	
ISO 4217 currency code.
	mandate_request_description
	A human-readable description of the payment and/or mandate. This will be displayed to the payer when authorising the billing request.
	mandate_request_metadata
	Key-value store of custom data that will be applied to the mandate created when this request is fulfilled. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	mandate_request_scheme
	A bank payment scheme. Currently “ach”, “autogiro”, “bacs”, “becs”, “becs_nz”, “betalingsservice”, “faster_payments”, “pad”, “pay_to” and “sepa_core” are supported. Optional for mandate only requests - if left blank, the payer will be able to select the currency/scheme to pay with from a list of your available schemes.
	mandate_request_verify
	Verification preference for the mandate. One of:

 	
 minimum: only verify if absolutely required, such as when part of scheme rules

	
 recommended: in addition to minimum, use the GoCardless payment intelligence solution to decide if a payer should be verified

	
 when_available: if verification mechanisms are available, use them

	
 always: as when_available, but fail to create the Billing Request if a mechanism isn’t available

By default, all Billing Requests use the recommended verification preference. It uses GoCardless payment intelligence solution to determine if a payer is fraudulent or not. The verification mechanism is based on the response and the payer may be asked to verify themselves. If the feature is not available, recommended behaves like minimum.

If you never wish to take advantage of our reduced risk products and Verified Mandates as they are released in new schemes, please use the minimum verification preference.

See Billing Requests: Creating Verified Mandates
 for more information.

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	name
	Name for the template. Provides a friendly human name for the template, as it is shown in the dashboard. Must not exceed 255 characters.
	payment_request_amount
	Amount in minor unit (e.g. pence in GBP, cents in EUR).
	payment_request_currency
	
ISO 4217 currency code. GBP and EUR supported; GBP with your customers in the UK and for EUR with your customers in Germany only.
	payment_request_description
	A human-readable description of the payment and/or mandate. This will be displayed to the payer when authorising the billing request.
	payment_request_metadata
	Key-value store of custom data that will be applied to the payment created when this request is fulfilled. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payment_request_scheme
	(Optional) A scheme used for Open Banking payments. Currently faster_payments is supported in the UK (GBP) and sepa_credit_transfer and sepa_instant_credit_transfer are supported in Germany (EUR). In Germany, sepa_credit_transfer is used as the default. Please be aware that sepa_instant_credit_transfer may incur an additional fee for your customer.
	redirect_uri
	URL that the payer can be redirected to after completing the request flow.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/billing_request_templates/BRT123 HTTP/1.1
Content-Type: application/json
{
 "billing_request_templates": {
 "name": "12 Month Silver Plan",
 "payment_request_amount": "49.99"
 }
}

HTTP/1.1 200 OK
Location: /billing_request_templates/BRT123
Content-Type: application/json
{
 "billing_request_templates": {
 "id": "BRT123",
 "name": "12 Month Silver Plan",
 "mandate_request_currency": "GBP",
 "mandate_request_scheme": null,
 "mandate_request_verify": null,
 "mandate_request_metadata": null,
 "payment_request_description": "One-time joining fee",
 "mandate_request_description": "Recurring fee",
 "payment_request_amount": "49.99",
 "payment_request_currency": "GBP",
 "payment_request_scheme": null,
 "payment_request_metadata": null,
 "redirect_uri": "https://my-company.com/landing",
 "authorisation_url": "https://pay.gocardless.com/BRT123",
 "metadata": {
 "checkout-flow": "primary"
 },
 "created_at": "2021-07-27T17:10:33.784Z",
 "updated_at": "2021-07-30T11:28:11.123Z"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->billingRequestTemplates()->update("BRT123", [
 "params" => [
 "name" => "12 Month Silver Plan",
 "payment_request_amount" => "49.99"
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.billing_request_templates.update("BRT123", params={
 "name": "12 Month Silver Plan",
 "payment_request_amount": "49.99",
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.billing_request_templates.update("BRT123", params: {
 name: "12 Month Silver Plan",
 payment_request_amount: "49.99",
})

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

BillingRequestTemplate billingRequestTemplate = client.billingRequestTemplates().update("BRT123")
 .withName("12 Month Silver Plan")
 .withPaymentRequestAmount("49.99")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const billingRequestTemplate = await client.billingRequestTemplates.update({
 name: "12 Month Silver Plan",
 payment_request_amount: "49.99",
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.BillingRequestTemplates.UpdateAsync(
 "BRT123",
 new GoCardless.Services.BillingRequestTemplateUpdateRequest()
 {
 Name = "12 Month Silver Plan",
 PaymentRequestAmount = 4999,
 }
);

GoCardless.Resources.BillingRequestTemplate billingRequestTemplate = resp.BillingRequestTemplate;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 billingRequestTemplateUpdateParams := gocardless.BillingRequestTemplateUpdateParams{
 Name: "12 Month Silver Plan",
 PaymentRequestAmount: 4999,
 }

 billingRequestTemplate, err := client.BillingRequestTemplates.Update(context, "BRT123", billingRequestTemplateUpdateParams)

}

 Institutions

Institutions that are supported when creating Bank Authorisations for a particular country or purpose.

Not all institutions support both Payment Initiation (PIS) and Account Information (AIS) services.

Properties

	id
	The unique identifier for this institution
	autocompletes_collect_bank_account
	Flag to show if selecting this institution in the select_institution action can auto-complete the collect_bank_account action. The bank can return the payer’s bank account details to GoCardless.
	country_code
	
ISO 3166-1 alpha-2 code. The country code of the institution.
	icon_url
	A URL pointing to the icon for this institution
	logo_url
	A URL pointing to the logo for this institution
	name
	A human readable name for this institution

 List Institutions

Returns a list of supported institutions.

Relative endpoint: GET /institutions

Deprecated: This list institutions endpoint is no longer supported. We strongly recommend using the
List Institutions For Billing Request
instead.

Parameters

	country_code
	
ISO 3166-1 alpha-2 code. The country code of the institution.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/institutions?country_code=GB HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "institutions": [
 {
 "id": "monzo",
 "name": "Monzo",
 "logo_url": "https://assets.gocardless.com/icon",
 "icon_url": "https://assets.gocardless.com/icon",
 "country_code": "GB"
 }
]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->institutions()->list([
 "params" => ["country_code" => "GB"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

@client.institutions.list(params={"country_code": "GB" }).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.institutions.list(params: { country_code: "GB" })

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Institution institution = client.institutions().all().withCountryCode("GB").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

// List of all institutions.
const institutions = await client.institutions.list();

// List of institutions for a country code.
const institutions = await client.institutions.list({ countryCode: 'GB'});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

// List of institutions for a country code.
var request = new GoCardless.Services.InstitutionListRequest()
 {
 CountryCode = "GB",
 };

var institutionListResponse = gocardless.Institutions.All(request);

// List of all institutions.
var institutionListResponse = gocardless.Institutions.All();

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 institutionListParams := gocardless.InstitutionListParams{}
 institutionListResult, err := client.Institutions().List(context, institutionListParams)
 for _, institution := range institutionListResult.Institutions {
 fmt.Println(institution.Id)
 }

}

 List institutions for Billing Request

Returns all institutions valid for a Billing Request.

This endpoint is currently supported only for FasterPayments.

Relative endpoint: GET /billing_requests/BRQ123/institutions

Restricted: this endpoint is restricted to GoCardless Pro and GoCardless Enterprise accounts with the custom payment pages upgrade.

Parameters

	country_code
	
required ISO 3166-1 alpha-2 code. The country code of the institution.
	ids
	ID(s) of the institution(s) to retrieve. More than one ID can be specified using a comma-separated string.
	search
	A search substring for retrieving institution(s), based on the institution’s name.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/billing_requests/BRQ123/institutions?country_code=GB HTTP/1.1

HTTP/1.1 200
Content-Type: application/json
{
 "institutions": [
 {
 "id": "BANK_OF_SCOTLAND_BUSINESS_BOFSGBS1",
 "name": "Bank of Scotland Business",
 "logo_url": "https://cdn.nordigen.com/ais/BANK_OF_SCOTLAND_BUSINESS_BOFSGBS1.png",
 "icon_url": "https://cdn.nordigen.com/ais/BANK_OF_SCOTLAND_BUSINESS_BOFSGBS1.png",
 "country_code": "GB",
 "autocompletes_collect_bank_account": true
 },
 {
 "id": "BANK_OF_SCOTLAND_BOFSGBS1",
 "name": "Bank of Scotland Personal",
 "logo_url": "https://cdn.nordigen.com/ais/BANK_OF_SCOTLAND_BUSINESS_BOFSGBS1.png",
 "icon_url": "https://cdn.nordigen.com/ais/BANK_OF_SCOTLAND_BUSINESS_BOFSGBS1.png",
 "country_code": "GB",
 "autocompletes_collect_bank_account": true
 }
]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->institutions()->listForBillingRequest("BR123", [
 "params" => ["country_code" => "GB"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

@client.institutions.listForBillingRequest("BR123", params={
 "country_code": "GB"
}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.institutions.listForBillingRequest("BR123", {
 params: { country_code: "GB" }
})

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.institutions().listForBillingRequest("BR123").withCountryCode("GB").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const institutions = await client.institutions.list_for_billing_request("BR123", { countryCode: 'GB'});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var request = new GoCardless.Services.InstitutionListForBillingRequestRequest()
 {
 CountryCode = "GB",
 };

var institutionListResponse = await gocardless.Institutions.ListForBillingRequestAsync("BR123", request);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 institutionListForBillingRequestParams := gocardless.InstitutionListForBillingRequestParams{
 CountryCode: "GB",
 }
 institutionListForBillingRequestResult, err := client.Institutions().ListForBillingRequest(context, "BR123", institutionListForBillingRequestParams)
 for _, institution := range institutionListForBillingRequestResult.Institutions {
 fmt.Println(institution.Id)
 }

}

 Core Endpoints

 Blocks

Blocks are created to prevent certain customer details from being used when creating
mandates.

The details used to create blocks can be exact matches, like a bank account or an email,
or a more generic match such as an email domain or bank name. Please be careful when creating
blocks for more generic matches as this may block legitimate payers from using your service.

New block types may be added over time.

A block is in essence a simple rule that is used to match against details in a newly
created mandate. If there is a successful match then the mandate is transitioned to a
“blocked” state.

Please note:

	Payments and subscriptions cannot be created against a mandate in blocked state.
	A mandate can never be transitioned out of the blocked state.

The one exception to this is when blocking a ‘bank_name’. This block will prevent bank
accounts from being created for banks that match the given name. To ensure we match
bank names correctly an existing bank account must be used when creating this block. Please
be aware that we cannot always match a bank account to a given bank name.

 This API is currently only available for GoCardless Protect+ integrators - please get in touch if you would like to use this API.

Properties

	id
	Unique identifier, beginning with “BLC”.
	active
	Shows if the block is active or disabled. Only active blocks will be used when deciding
if a mandate should be blocked.
	block_type
	Type of entity we will seek to match against when blocking the mandate. This
can currently be one of ‘email’, ‘email_domain’, ‘bank_account’, or ‘bank_name’.
	created_at
	Fixed timestamp, recording when this
resource was created.
	reason_description
	This field is required if the reason_type is other. It should be a description of
the reason for why you wish to block this payer and why it does not align with the
given reason_types. This is intended to help us improve our knowledge of types of
fraud.
	reason_type
	The reason you wish to block this payer, can currently be one of ‘identity_fraud’,
‘no_intent_to_pay’, ‘unfair_chargeback’. If the reason isn’t captured by one of the
above then ‘other’ can be selected but you must provide a reason description.
	resource_reference
	This field is a reference to the value you wish to block. This may be the raw value
(in the case of emails or email domains) or the ID of the resource (in the case of
bank accounts and bank names). This means in order to block a specific bank account
(even if you wish to block generically by name) it must already have been created as
a resource.
	updated_at
	Fixed timestamp, recording when this
resource was updated.

 Create a block

Creates a new Block of a given type. By default it will be active.

Relative endpoint: POST /blocks

Note: Block will be enabled if you try to create a block that already exists and is disabled.

Parameters

	active
	Shows if the block is active or disabled. Only active blocks will be used when deciding
if a mandate should be blocked.
	block_type
	Type of entity we will seek to match against when blocking the mandate. This
can currently be one of ‘email’, ‘email_domain’, ‘bank_account’, or ‘bank_name’.
	reason_description
	This field is required if the reason_type is other. It should be a description of
the reason for why you wish to block this payer and why it does not align with the
given reason_types. This is intended to help us improve our knowledge of types of
fraud.
	reason_type
	The reason you wish to block this payer, can currently be one of ‘identity_fraud’,
‘no_intent_to_pay’, ‘unfair_chargeback’. If the reason isn’t captured by one of the
above then ‘other’ can be selected but you must provide a reason description.
	resource_reference
	This field is a reference to the value you wish to block. This may be the raw value
(in the case of emails or email domains) or the ID of the resource (in the case of
bank accounts and bank names). This means in order to block a specific bank account
(even if you wish to block generically by name) it must already have been created as
a resource.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/blocks HTTP/1.1
Content-Type: application/json
{
 "blocks": {
 "block_type": "email",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "example@example.com"
 }
}

HTTP/1.1 201 Created
Location: /block/BLC123
Content-Type: application/json
{
 "blocks": {
 "id": "BLC123",
 "block_type": "email",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "example@example.com",
 "active": "true",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T17:26:28.305Z"
 }
}

POST https://api.gocardless.com/blocks HTTP/1.1
Content-Type: application/json
{
 "blocks": {
 "block_type": "bank_account",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "BA123"
 }
}

HTTP/1.1 201 Created
Location: /block/BLC456
Content-Type: application/json
{
 "blocks": {
 "id": "BLC456",
 "block_type": "bank_account",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "BA123",
 "active": "true",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T17:26:28.305Z"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$block = $client->blocks()->create([
 "params" => [
 "block_type" => "email",
 "reason_type" => "no_intent_to_pay",
 "resource_reference" => "example@example.com",
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

block = client.blocks.create(
 params={
 "block_type": "email",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "example@example.com"
 }
)

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

block = @client.blocks.create(
 params: {
 block_type: "email",
 reason_type: "no_intent_to_pay",
 resource_reference: "example@example.com"
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Block block = client.blocks().create()
 .withBlockType(Block.BlockType.EMAIL)
 .withReasonType(Block.ReasonType.NO_INTENT_TO_PAY)
 .withResourceReference("example@example.com")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const block = await client.blocks.create({
 block_type: Types.BlockBlockType.Email,
 resource_reference: 'CU123',
 reason_type: Types.BlockReasonType.NoIntentToPay,
})

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.Blocks.CreateAsync(
 new GoCardless.Services.BlockCreateRequest()
 {
 BlockType = GoCardless.Services.BlockCreateRequest.BlockBlockType.Email,
 ReasonType = GoCardless.Services.BlockCreateRequest.BlockReasonType.NoIntentToPay,
 ResourceReference = "example@example.com"
 }
);
GoCardless.Resources.Block block = resp.Block;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 blockCreateParams := gocardless.BlockCreateParams{
 BlockType: "email",
 ReasonType: "no_intent_to_pay",
 ResourceReference: "example@example.com",
 }

 block, err := client.Blocks.Create(context, blockCreateParams)

}

 Get a single block

Retrieves the details of an existing block.

Relative endpoint: GET /blocks/BLC123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/blocks/BLC456 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "blocks": {
 "id": "BLC456",
 "block_type": "email",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "example@example.com",
 "active": "true",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T17:26:28.305Z"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$block = $client->blocks()->get("BLC456");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

block = client.blocks.get("BLC456")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

block = @client.blocks.get("BLC456")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Block block = client.blocks().get("BLC456").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const block = await client.blocks.find("BLC456");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.Blocks.GetAsync("BLC456");
GoCardless.Resources.Block block = resp.Block;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 block, err := client.Blocks.Get(context, "BLC456")

}

 List multiple blocks

Returns a cursor-paginated list of your blocks.

Relative endpoint: GET /blocks

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	block
	ID of a Block.
	block_type
	Type of entity we will seek to match against when blocking the mandate. This
can currently be one of ‘email’, ‘email_domain’, ‘bank_account’, or ‘bank_name’.
	created_at
	Fixed timestamp, recording when this
resource was created.
	limit
	Number of records to return.
	reason_type
	The reason you wish to block this payer, can currently be one of ‘identity_fraud’,
‘no_intent_to_pay’, ‘unfair_chargeback’. If the reason isn’t captured by one of the
above then ‘other’ can be selected but you must provide a reason description.
	updated_at
	Fixed timestamp, recording when this
resource was updated.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/blocks HTTP/1.1

HTTP/1.1 200 OK
Location: /blocks
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 },
 "blocks": [
 {
 "id": "BLC123",
 "block_type": "email",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "example@example.com",
 "active": "true",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T17:26:28.305Z"
 },
 {
 "id": "BLC456",
 "block_type": "email_domain",
 "reason_type": "identity_fraud",
 "resource_reference": "example.com",
 "active": "true",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T17:26:28.305Z"
 }
]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

foreach ($client->blocks()->all() as $record) {
 echo $record->id;
 echo $record->block_type;
}

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

for block in client.blocks.all():
 print(block.id)
 print(block.block_type)

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.blocks.all.each do |block|
 puts block.id
 puts block.block_type
end

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (Block block : client.blocks().all().execute()) {
 System.out.println(block.getId());
 System.out.println(block.getBlockType());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

for await (const block of client.blocks.all({})) {
 console.log(block.id);
 console.log(block.block_type);
}

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

foreach (GoCardless.Resources.Block block in gocardless.Blocks.All())
{
 Console.WriteLine(block.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 blockListParams := gocardless.BlockListParams{}
 blockListResult, err := client.Blocks.List(context, blockListParams)
 for _, block := range blockListResult.Blocks {
 fmt.Println(block.Id)

}

 Disable a block

Disables a block so that it no longer will prevent mandate creation.

Relative endpoint: POST /blocks/BLC123/actions/disable

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/blocks/BLC123/actions/disable HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "blocks": {
 "id": "BLC123",
 "block_type": "bank_account",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "BA123",
 "active": "false",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T19:26:28.305Z"
 }
}

POST https://api.gocardless.com/blocks/BLC123/actions/disable HTTP/1.1
HTTP/1.1 409 Conflict

POST https://api.gocardless.com/blocks/MISSING_BLOCK_ID/actions/disable HTTP/1.1
HTTP/1.1 404 NotFound

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$block = $client->blocks()->disable("BLC123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

block = client.blocks.disable("BLC123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

block = @client.blocks.disable("BLC123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Block block = client.blocks().disable("BLC123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const block = await client.blocks.disable("BLC456");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.Blocks.DisableAsync("BLC123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 block, err := client.Blocks.Disable(context, "BLC123")

}

 Enable a block

Enables a previously disabled block so that it will prevent mandate creation

Relative endpoint: POST /blocks/BLC123/actions/enable

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/blocks/BLC123/actions/enable HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "blocks": {
 "id": "BLC123",
 "block_type": "bank_account",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "BA123",
 "active": "true",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T19:26:28.305Z"
 }
}

POST https://api.gocardless.com/blocks/BLC123/actions/enable HTTP/1.1
HTTP/1.1 409 Conflict

POST https://api.gocardless.com/blocks/MISSING_BLOCK_ID/actions/enable HTTP/1.1
HTTP/1.1 404 NotFound

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$block = $client->blocks()->enable("BLC123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

block = client.blocks.enable("BLC123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

block = @client.blocks.enable("BLC123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Block block = client.blocks().enable("BLC123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const block = await client.blocks.enable("BLC456");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await gocardless.Blocks.EnableAsync("BLC123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 block, err := client.Blocks.Enable(context, "BLC123")

}

 Create blocks by reference

Creates new blocks for a given reference. By default blocks will be active.
Returns 201 if at least one block was created. Returns 200 if there were no new
blocks created.

Relative endpoint: POST /blocks/block_by_ref

Parameters

	active
	Shows if the block is active or disabled. Only active blocks will be used when deciding
if a mandate should be blocked.
	reason_description
	This field is required if the reason_type is other. It should be a description of
the reason for why you wish to block this payer and why it does not align with the
given reason_types. This is intended to help us improve our knowledge of types of
fraud.
	reason_type
	The reason you wish to block this payer, can currently be one of ‘identity_fraud’,
‘no_intent_to_pay’, ‘unfair_chargeback’. If the reason isn’t captured by one of the
above then ‘other’ can be selected but you must provide a reason description.
	reference_type
	Type of entity we will seek to get the associated emails and bank accounts to
create blocks from. This can currently be one of ‘customer’ or ‘mandate’.
	reference_value
	This field is a reference to the entity you wish to block based on its emails
and bank accounts. This may be the ID of a customer or a mandate. This means in
order to block by reference the entity must have already been created as a
resource.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/blocks/block_by_ref HTTP/1.1
Content-Type: application/json
{
 "blocks": {
 "reference_type": "customer",
 "reference_value": "CU123",
 "reason_type": "no_intent_to_pay"
 }
}

HTTP/1.1 201 Created
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 },
 "blocks": [
 {
 "id": "BLC123",
 "block_type": "email",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "example@example.com",
 "active": "true",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T17:26:28.305Z"
 },
 {
 "id": "BLC456",
 "block_type": "bank_account",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "BA123",
 "active": "true",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T17:26:28.305Z"
 }
]
}

POST https://api.gocardless.com/blocks/block_by_ref HTTP/1.1
Content-Type: application/json
{
 "blocks": {
 "reference_type": "customer",
 "reference_value": "CU123",
 "reason_type": "no_intent_to_pay"
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 },
 "blocks": [
 {
 "id": "BLC123",
 "block_type": "email",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "example@example.com",
 "active": "true",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T17:26:28.305Z"
 },
 {
 "id": "BLC456",
 "block_type": "bank_account",
 "reason_type": "no_intent_to_pay",
 "resource_reference": "BA123",
 "active": "true",
 "created_at": "2021-03-25T17:26:28.305Z",
 "updated_at": "2021-03-25T17:26:28.305Z"
 }
]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$block = $client->blocks()->blockByRef([
 "params" => [
 "reference_type" => "customer",
 "reference_value" => "CU123",
 "reason_type" => "no_intent_to_pay",
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

response = client.blocks.block_by_ref(
 params={
 "reference_type": "customer",
 "reference_value": "CU123",
 "reason_type": "no_intent_to_pay"
 }
)
blocks = response.records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

resp = @client.blocks.block_by_ref(
 params: {
 reference_type: "customer",
 reference_value: "CU123"
 reason_type: "no_intent_to_pay",
 }
)
blocks = resp.records

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Iterable<Block> iterable = client.blocks().blockByRef()
 .withReferenceType("customer")
 .withReferenceValue("CU123")
 .withReasonType("no_intent_to_pay")
 .execute();
List<Block> blocks = Lists.newArrayList(iterable);

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const response = await client.blocks.block_by_ref(
 {
 reference_type: Types.BlockReferenceType.Customer,
 reference_value: 'CU123',
 reason_type: Types.BlockReasonType.NoIntentToPay
 }
);
const blocks = response.blocks;

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var resp = await client.Blocks.BlockByRefAsync(new BlockBlockByRefRequest() {
 ReferenceType = "customer",
 ReferenceValue = "CU123",
 ReasonType = "no_intent_to_pay",
});
IReadOnlyList < GoCardless.Resources.Block > blocks = resp.Blocks;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 blockBlockByRefParams := gocardless.BlockBlockByRefParams{
 ReferenceType: "customer",
 ReferenceValue: "CU123",
 ReasonType: "no_intent_to_pay",
 }

 blockBlockByRefResult, err := client.Blocks.BlockByRef(context, blockBlockByRefParams)
 for _, block := range blockBlockByRefResult.Blocks {
 fmt.Println(block.Id)
 }

}

 Creditors

Each payment taken through the API is linked to a “creditor”, to whom the payment is then paid out. In most cases your organisation will have a single “creditor”, but the API also supports collecting payments on behalf of others.

Currently, for Anti Money Laundering reasons, any creditors you add must be directly related to your organisation.

Properties

	id
	Unique identifier, beginning with “CR”.
	address_line1
	The first line of the creditor’s address.
	address_line2
	The second line of the creditor’s address.
	address_line3
	The third line of the creditor’s address.
	bank_reference_prefix
	Prefix for the bank reference of payouts sent to this creditor. For instance, if
the creditor’s bank_reference_prefix was ACME, the bank reference of a payout
sent to that creditor could be ACME-8G7Q8.

 This prefix is also used for refunds in EUR and GBP.

	can_create_refunds
	Boolean indicating whether the creditor is permitted to create refunds.
	city
	The city of the creditor’s address.
	country_code
	ISO 3166-1 alpha-2 code.
	created_at
	Fixed timestamp, recording when this resource was created.
	creditor_type
	The type of business of the creditor. Currently, individual, company, charity, partnership, and trust are supported.
	custom_payment_pages_enabled
	Boolean value indicating whether creditor has the Custom Payment Pages functionality enabled.
	fx_payout_currency
	
ISO 4217 code for the currency in which amounts will be paid out (after foreign exchange). Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported. Present only if payouts will be (or were) made via foreign exchange.
	logo_url
	URL for the creditor’s logo, which may be shown on their payment pages.
	mandate_imports_enabled
	Boolean value indicating whether creditor has the Mandate Imports functionality enabled.
	merchant_responsible_for_notifications
	Boolean value indicating whether the organisation is responsible for sending all customer notifications (note this is separate from the functionality described here). If you are a partner app, and this value is true, you should not send notifications on behalf of this organisation.
	name
	The creditor’s trading name.
	postal_code
	The creditor’s postal code.
	region
	The creditor’s address region, county or department.
	scheme_identifiers
	An array of the scheme identifiers this creditor can create mandates against.

 The support address, phone_number and email fields are for customers to contact the merchant for support purposes. They must be displayed on the payment page, please see our compliance requirements for more details.

 Each instance will contain these properties:

 	
 address_line1: The first line of the scheme identifier’s support address.

	
 address_line2: The second line of the scheme identifier’s support address.

	
 address_line3: The third line of the scheme identifier’s support address.

	
 can_specify_mandate_reference: Whether a custom reference can be submitted for mandates using this scheme identifier.

	
 city: The city of the scheme identifier’s support address.

	
 country_code: ISO 3166-1 alpha-2 code.

	
 created_at: Fixed timestamp, recording when this resource was created.

	
 currency: The currency of the scheme identifier.

	
 email: Scheme identifier’s support email address.

	
 id: Unique identifier, usually beginning with “SU”.

	
 minimum_advance_notice: The minimum interval, in working days, between the sending of a pre-notification to the customer, and the charge date of a payment using this scheme identifier.

 By default, GoCardless sends these notifications automatically. Please see our compliance requirements for more details.

	
 name: The name which appears on customers’ bank statements. This should usually be the merchant’s trading name.

	
 phone_number: Scheme identifier’s support phone number.

	
 postal_code: The scheme identifier’s support postal code.

	
 reference: The scheme-unique identifier against which payments are submitted.

	
 region: The scheme identifier’s support address region, county or department.

	
 scheme: The scheme which this scheme identifier applies to.

	
 status: The status of the scheme identifier. Only active scheme identifiers will be applied to a creditor and used against payments.

	verification_status
	The creditor’s verification status, indicating whether they can yet receive payouts. For more details on handling verification as a partner, see our “Helping your users get verified” guide. One of:

 	
 successful: The creditor’s account is fully verified, and they can receive payouts. Once a creditor has been successfully verified, they may in the future require further verification - for example, if they change their payout bank account, we will have to check that they own the new bank account before they can receive payouts again.

	
 in_review: The creditor has provided all of the information currently requested, and it is awaiting review by GoCardless before they can be verified and receive payouts.

	
 action_required: The creditor needs to provide further information to verify their account so they can receive payouts, and should visit the verification flow.

	links[default_aud_payout_account]
	ID of the bank account which is set up to receive payouts in AUD.
	links[default_cad_payout_account]
	ID of the bank account which is set up to receive payouts in CAD.
	links[default_dkk_payout_account]
	ID of the bank account which is set up to receive payouts in DKK.
	links[default_eur_payout_account]
	ID of the bank account which is set up to receive payouts in EUR.
	links[default_gbp_payout_account]
	ID of the bank account which is set up to receive payouts in GBP.
	links[default_nzd_payout_account]
	ID of the bank account which is set up to receive payouts in NZD.
	links[default_sek_payout_account]
	ID of the bank account which is set up to receive payouts in SEK.
	links[default_usd_payout_account]
	ID of the bank account which is set up to receive payouts in USD.

 Create a creditor

Creates a new creditor.

Relative endpoint: POST /creditors

Restricted: This endpoint is restricted to GoCardless Embed customers. Please contact us if you are interested in using this product. Partners should instead manage multiple merchant accounts by building a partner integration.

Parameters

	country_code
	
required ISO 3166-1 alpha-2 code.

	creditor_type
	
required The type of business of the creditor. Currently, individual, company, charity, partnership, and trust are supported.
	name
	
required The creditor’s trading name.
	bank_reference_prefix
	Prefix for the bank reference of payouts sent to this creditor. For instance, if
the creditor’s bank_reference_prefix was ACME, the bank reference of a payout
sent to that creditor could be ACME-8G7Q8.

 This prefix is also used for refunds in EUR and GBP.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/creditors HTTP/1.1
Content-Type: application/json
{
 "creditors": {
 "name": "Acme",
 "country_code": "GB",
 "creditor_type": "company",
 "bank_reference_prefix": "ACME"
 }
}

HTTP/1.1 201 Created
Location: /creditors/CR123
Content-Type: application/json
{
 "creditors": {
 "id": "CR123",
 "created_at": "2017-02-16T12:34:56.000Z",
 "name": "Acme",
 "address_line1": null,
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": "GB",
 "creditor_type": "company",
 "logo_url": null,
 "scheme_identifiers": [],
 "verification_status": "successful",
 "can_create_refunds": false,
 "fx_payout_currency": null,
 "mandate_imports_enabled": false,
 "custom_payment_pages_enabled": true,
 "merchant_responsible_for_notifications": true,
 "bank_reference_prefix": "ACME",
 "links": {}
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->creditors()->create([
 'params' => ['name' => 'Acme',
 'country_code' => 'GB',
 'bank_reference_prefix' => 'ACME',
 'creditor_type' => 'company']
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.creditors.create(params={
 "name": "Acme",
 "country_code": "GB",
 "creditor_type": "company",
 "bank_reference_prefix": "ACME",
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.creditors.create(
 params: {
 name: "Acme",
 country_code: "GB",
 creditor_type: "company",
 bank_reference_prefix: "ACME",
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Creditor creditor = client.creditors().create()
 .withName("Acme")
 .withCountryCode("GB")
 .withCreditorType("company")
 .withBankReferencePrefix("ACME")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const creditor = await client.creditors.create({
 name: "Acme",
 country_code: "GB",
 creditor_type: "company",
 bank_reference_prefix: "ACME",
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var creditorRequest = new GoCardless.Services.CreditorCreateRequest()
{
 Name = "Acme",
 CountryCode = "GB",
 CreditorType = "company",
 BankReferencePrefix = "ACME",
};

var creditorResponse = await gocardless.Creditors.CreateAsync(creditorRequest);
GoCardless.Resources.Creditor creditor = creditorResponse.Creditor;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 creditorCreateParams := gocardless.CreditorCreateParams{
 Name: "Acme",
 CountryCode: "GB",
 CreditorType: "company",
 BankReferencePrefix: "ACME",
 }

 creditor, err := client.Creditors.Create(context, creditorCreateParams)

}

 List creditors

Returns a cursor-paginated list of your creditors.

Relative endpoint: GET /creditors

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	limit
	Number of records to return.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/creditors HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null,
 },
 "limit": 50
 },
 "creditors":[{
 "id": "CR123",
 "created_at": "2017-02-16T12:34:56.000Z",
 "name": "Acme",
 "address_line1": null,
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": "GB",
 "creditor_type": "company",
 "logo_url": null,
 "scheme_identifiers": [],
 "verification_status": "successful",
 "can_create_refunds": false,
 "fx_payout_currency": null,
 "mandate_imports_enabled": false,
 "custom_payment_pages_enabled": true,
 "merchant_responsible_for_notifications": true,
 "bank_reference_prefix": "ACME",
 "links": {}
 }]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->creditors()->list();

$client->creditors()->list([
 'params' => ['created_at[gt]' => '2014-05-08T17:01:06.000Z']
])

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.creditors.list().records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.creditors.list

@client.creditors.list(params: { limit: 2 })

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (Creditor creditor : client.creditors().all().execute()) {
 System.out.println(creditor.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const creditors = await client.creditors.list();

// List the first three creditors.
const creditors = await client.creditors.list({ limit: 3 });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var creditorListResponse = gocardless.Creditors.All();
foreach (GoCardless.Resources.Creditor creditor in creditorListResponse)
{
 Console.WriteLine(creditor.Name);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 creditorListParams := gocardless.CreditorListParams{
 Limit: 3,
 }

 // List the first three creditors.
 creditorListResult, err := client.Creditors.List(context, creditorListParams)
 for _, creditor := creditorListResult.Creditors {
 fmt.Println(creditor.Name)
 }

}

 Get a single creditor

Retrieves the details of an existing creditor.

Relative endpoint: GET /creditors/CR123

Parameters

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/creditors/CR123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "creditors": {
 "id": "CR123",
 "created_at": "2017-02-16T12:34:56.000Z",
 "name": "Acme",
 "address_line1": null,
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": "GB",
 "creditor_type": "company",
 "logo_url": null,
 "scheme_identifiers": [],
 "verification_status": "successful",
 "can_create_refunds": false,
 "fx_payout_currency": null,
 "mandate_imports_enabled": false,
 "custom_payment_pages_enabled": true,
 "merchant_responsible_for_notifications": true,
 "bank_reference_prefix": "ACME",
 "links": {}
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->creditors()->get('CR123');

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.creditors.get("CR123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.creditors.get("CR123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Creditor creditor = client.creditors().get("CR123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const creditor = await client.creditor.find("CR123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var creditorResponse = await gocardless.Creditors.GetAsync("CR0123");
GoCardless.Resources.Creditor creditor = creditorResponse.Creditor;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 creditor, err := client.Creditors.Get(context, "CR123")

}

 Update a creditor

Updates a creditor object. Supports all of the fields supported when creating a creditor.

Relative endpoint: PUT /creditors/CR123

Parameters

	address_line1
	The first line of the creditor’s address.
	address_line2
	The second line of the creditor’s address.
	address_line3
	The third line of the creditor’s address.
	bank_reference_prefix
	Prefix for the bank reference of payouts sent to this creditor. For instance, if
the creditor’s bank_reference_prefix was ACME, the bank reference of a payout
sent to that creditor could be ACME-8G7Q8.

 This prefix is also used for refunds in EUR and GBP.

	city
	The city of the creditor’s address.
	country_code
	ISO 3166-1 alpha-2 code.
	name
	The creditor’s trading name.
	postal_code
	The creditor’s postal code.
	region
	The creditor’s address region, county or department.
	links[default_aud_payout_account]
	ID of the bank account which is set up to receive payouts in AUD.
	links[default_cad_payout_account]
	ID of the bank account which is set up to receive payouts in CAD.
	links[default_dkk_payout_account]
	ID of the bank account which is set up to receive payouts in DKK.
	links[default_eur_payout_account]
	ID of the bank account which is set up to receive payouts in EUR.
	links[default_gbp_payout_account]
	ID of the bank account which is set up to receive payouts in GBP.
	links[default_nzd_payout_account]
	ID of the bank account which is set up to receive payouts in NZD.
	links[default_sek_payout_account]
	ID of the bank account which is set up to receive payouts in SEK.
	links[default_usd_payout_account]
	ID of the bank account which is set up to receive payouts in USD.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/creditors/CR123 HTTP/1.1
Content-Type: application/json
{
 "creditors": {
 "links": {
 "default_gbp_payout_account": "BA789"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "creditors": {
 "id": "CR123",
 "created_at": "2017-02-16T12:34:56.000Z",
 "name": "Acme",
 "address_line1": null,
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": "GB",
 "creditor_type": "company",
 "logo_url": null,
 "scheme_identifiers": [],
 "verification_status": "successful",
 "can_create_refunds": false,
 "fx_payout_currency": null,
 "mandate_imports_enabled": false,
 "custom_payment_pages_enabled": true,
 "merchant_responsible_for_notifications": true,
 "bank_reference_prefix": "ACME",
 "links": {
 "default_gbp_payout_account": "BA789",
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->creditors()->update('CR123', [
 'params' => ['links' => ['default_gbp_payout_account' => 'BA789']]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.creditors.update("CR123", params={
 "links": {
 "default_gbp_payout_account": "BA789"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.creditors.update(
 "CR123",
 params: {
 links: { default_gbp_payout_account: "BA789" }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.creditors().update("CR123")
 .withLinksDefaultGbpPayoutAccount("BA789")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const creditor = await client.creditors.update(
 "CR123",
 {
 links: {
 default_gbp_payout_account: "BA789"
 }
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var creditorRequest = new GoCardless.Services.CreditorUpdateRequest()
{
 Links = new GoCardless.Services.CreditorUpdateRequest.CreditorLinks()
 {
 DefaultGbpPayoutAccount = "BA789"
 }
};

var creditorResponse = await gocardless.Creditors.UpdateAsync("CR0123", creditorRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 creditorUpdateParams := gocardless.CreditorUpdateParams{
 Links: &gocardless.CreditorUpdateParamsLinks{
 DefaultGbpPayoutAccount: "BA789",
 },
 }

 creditor, err := client.Creditors.Update(context, "CR123", creditorUpdateParams)

}

 Creditor Bank Accounts

Creditor Bank Accounts hold the bank details of a creditor. These are the bank accounts which your payouts will be sent to.

Note that creditor bank accounts must be unique, and so you will encounter a bank_account_exists error if you try to create a duplicate bank account. You may wish to handle this by updating the existing record instead, the ID of which will be provided as links[creditor_bank_account] in the error response.

Restricted: This API is not available for partner integrations.

Properties

	id
	Unique identifier, beginning with “BA”.
	account_holder_name
	Name of the account holder, as known by the bank. Usually this is the same as the name stored with the linked creditor. This field will be transliterated, upcased and truncated to 18 characters.
	account_number_ending
	The last few digits of the account number. Currently 4 digits for NZD bank accounts and 2 digits for other currencies.
	account_type
	Bank account type. Required for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	bank_name
	Name of bank, taken from the bank details.
	country_code
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	created_at
	Fixed timestamp, recording when this resource was created.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	enabled
	Boolean value showing whether the bank account is enabled or disabled.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	verification_status
	Verification status of the Bank Account. Can be one of pending, in_review or successful

	links[creditor]
	ID of the creditor that owns this bank account.

 Create a creditor bank account

Creates a new creditor bank account object.

Relative endpoint: POST /creditor_bank_accounts

Parameters

	account_holder_name
	
required Name of the account holder, as known by the bank. Usually this is the same as the name stored with the linked creditor. This field will be transliterated, upcased and truncated to 18 characters.
	account_number
	Bank account number - see local details for more information. Alternatively you can provide an iban.
	account_type
	Bank account type. Required for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	bank_code
	Bank code - see local details for more information. Alternatively you can provide an iban.
	branch_code
	Branch code - see local details for more information. Alternatively you can provide an iban.
	country_code
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	iban
	International Bank Account Number. Alternatively you can provide local details. IBANs are not accepted for Swedish bank accounts denominated in SEK - you must supply local details.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	set_as_default_payout_account
	Defaults to true. When this is set to true, it will cause this bank account to be set as the account that GoCardless will pay out to.
	links[creditor]
	
required ID of the creditor that owns this bank account.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/creditor_bank_accounts HTTP/1.1
Content-Type: application/json
{
 "creditor_bank_accounts": {
 "account_number": "55779911",
 "branch_code": "200000",
 "country_code": "GB",
 "account_holder_name": "Acme",
 "links": {
 "creditor": "CR123"
 }
 }
}

HTTP/1.1 201 Created
Location: /creditor_bank_accounts/BA123
Content-Type: application/json
{
 "creditor_bank_accounts": {
 "id": "BA123",
 "created_at": "2014-05-27T12:43:17.000Z",
 "account_holder_name": "Acme",
 "account_number_ending": "11",
 "account_type": null,
 "country_code": "GB",
 "currency": "GBP",
 "bank_name": "BARCLAYS BANK PLC",
 "enabled": true,
 "links": {
 "creditor": "CR123"
 },
 "verification_status": "pending"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->creditorBankAccounts()->create([
 "params" => ["account_number" => "55779911",
 "branch_code" => "200000",
 "country_code" => "GB",
 "account_holder_name" => "Acme",
 "links" => ["creditor" => "CR123"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.creditor_bank_accounts.create(params={
 "account_number": "55779911",
 "branch_code": "200000",
 "country_code": "GB",
 "account_holder_name": "Acme",
 "links": {
 "creditor": "CR123"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.creditor_bank_accounts.create(
 params: {
 account_holder_name: "Example Ltd",
 account_number: "55779911",
 branch_code: "200000",
 country_code: "GB",
 links: {
 creditor: "CR123"
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

CreditorBankAccount creditorBankAccount = client.creditorBankAccounts().create()
 .withAccountNumber("55779911")
 .withBranchCode("200000")
 .withCountryCode("GB")
 .withAccountHolderName("Acme")
 .withLinksCreditor("CR123")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const creditorBankAccount = await client.creditorBankAccounts.create({
 account_number: "55779911",
 branch_code: "200000",
 country_code: "GB",
 account_holder_name: "Acme",
 links: {
 creditor: "CR123"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var creditorBankAccountRequest = new GoCardless.Services.CreditorBankAccountCreateRequest()
{
 AccountHolderName = "Example Ltd",
 AccountNumber = "55779911",
 BranchCode = "200000",
 CountryCode = "GB",
 Links = new GoCardless.Services.CreditorBankAccountCreateRequest.CreditorBankAccountLinks()
 {
 Creditor = "CR0123"
 }
};

var creditorBankAccountResponse = await gocardless.CreditorBankAccounts.CreateAsync(creditorBankAccountRequest);
GoCardless.Resources.CreditorBankAccount creditorBankAccount = creditorBankAccountResponse.CreditorBankAccount;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 creditorBankAccountCreateParams := gocardless.CreditorBankAccountCreateParams{
 AccountNumber: "55779911",
 BranchCode: "200000",
 CountryCode: "GB",
 AccountHolderName: "Acme",
 }

 creditorBankAccount, err := client.CreditorBankAccounts.Create(context, creditorBankAccountCreateParams)

}

 List creditor bank accounts

Returns a cursor-paginated list of your creditor bank accounts.

Relative endpoint: GET /creditor_bank_accounts

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	creditor
	Unique identifier, beginning with “CR”.
	enabled
	If true, only return enabled bank accounts. If false, only return disabled bank accounts.
	limit
	Number of records to return.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/creditor_bank_accounts HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": "BA123",
 },
 "limit": 50
 },
 "creditor_bank_accounts":[{
 "id": "BA123",
 "created_at": "2014-05-27T12:43:17.000Z",
 "account_holder_name": "Acme",
 "account_number_ending": "11",
 "account_type": null,
 "country_code": "GB",
 "currency": "GBP",
 "bank_name": "BARCLAYS BANK PLC",
 "enabled": true,
 "links": {
 "creditor": "CR123"
 },
 "verification_status": "pending"
 }, {
 ...
 }]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->creditorBankAccounts()->list();

$client->creditorBankAccounts()->list([
 "params" => ["enabled" => true]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.creditor_bank_accounts.list().records

client.creditor_bank_accounts.list(params={"creditor": "CR123"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.creditor_bank_accounts.list

@client.creditor_bank_accounts.list(params: { enabled: true })

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (CreditorBankAccount creditorBankAccount : client.creditorBankAccounts().all().withCreditor("CR123").execute()) {
 System.out.println(creditorBankAccount.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const creditorBankAccounts = await client.creditorBankAccounts.list();

// List all 'enabled' creditor bank accounts.
const creditorBankAccounts = await client.creditorBankAccounts.list({ enabled: true });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var creditorBankAccountRequest = new GoCardless.Services.CreditorBankAccountListRequest()
{
 Creditor = "CR000123"
};

var creditorBankAccountListResponse = gocardless.CreditorBankAccounts.All(creditorBankAccountRequest);
foreach (GoCardless.Resources.CreditorBankAccount creditorBankAccount in creditorBankAccountListResponse)
{
 Console.WriteLine(creditorBank.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 creditorBankAccountListParams := gocardless.CreditorBankAccountListParams{}
 creditorBankAccountListResult, err := client.CreditorBankAccounts.List(context, creditorBankAccountListParams)
 for _, creditorBankAccount := range creditorBankAccountListResult.CreditorBankAccounts {
 fmt.Println(creditorBankAccount.Id)
 }

}

 Get a single creditor bank account

Retrieves the details of an existing creditor bank account.

Relative endpoint: GET /creditor_bank_accounts/BA123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/creditor_bank_accounts/BA123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "creditor_bank_accounts": {
 "id": "BA123",
 "created_at": "2014-05-27T12:43:17.000Z",
 "account_holder_name": "Acme",
 "account_number_ending": "11",
 "account_type": null,
 "country_code": "GB",
 "currency": "GBP",
 "bank_name": "BARCLAYS BANK PLC",
 "enabled": true,
 "links": {
 "creditor": "CR123"
 },
 "verification_status": "pending"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->creditorBankAccounts()->get("BA123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.creditor_bank_accounts.get("BA123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.creditor_bank_accounts.get("BA123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

CreditorBankAccount creditorBankAccount = client.creditorBankAccounts().get("BA123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const creditorBankAccount = await client.creditorBankAccounts.find('BA123');

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var creditorBankAccountResponse = await gocardless.CreditorBankAccounts.GetAsync("BA0123");
GoCardless.Resources.CreditorBankAccount creditorBankAccount = creditorBankAccountResponse.CreditorBankAccount;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 creditorBankAccount, err := client.CreditorBankAccounts.Get(context, "BA123")

}

 Disable a creditor bank account

Immediately disables the bank account, no money can be paid out to a disabled account.

This will return a disable_failed error if the bank account has already been disabled.

A disabled bank account can be re-enabled by creating a new bank account resource with the same details.

Relative endpoint: POST /creditor_bank_accounts/BA123/actions/disable

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/creditor_bank_accounts/BA123/actions/disable HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "creditor_bank_accounts": {
 "id": "BA123",
 "created_at": "2014-05-27T12:43:17.000Z",
 "account_holder_name": "Acme",
 "account_number_ending": "11",
 "account_type": null,
 "country_code": "GB",
 "currency": "GBP",
 "bank_name": "BARCLAYS BANK PLC",
 "enabled": false,
 "links": {
 "creditor": "CR123"
 },
 "verification_status": "pending"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->creditorBankAccounts()->disable("BA123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.creditor_bank_accounts.disable("BA123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.creditor_bank_accounts.disable("BA123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.creditorBankAccounts().disable("BA123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const creditorBankAccountResponse = await client.creditorBankAccounts.disable("BA123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var creditorBankAccountResponse = await gocardless.CreditorBankAccounts.DisableAsync("BA0123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 creditorBankAccount, err := client.CreditorBankAccounts.Disable(context, "BA123")

}

 Currency Exchange Rates

Currency exchange rates from our foreign exchange provider.

Properties

	rate
	The exchange rate from the source to target currencies provided with up to 10 decimal places.
	source
	Source currency
	target
	Target currency
	time
	Time at which the rate was retrieved from the provider.

 List exchange rates

Returns a cursor-paginated list of all exchange rates.

Relative endpoint: GET /currency_exchange_rates

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	limit
	Number of records to return.
	source
	Source currency
	target
	Target currency

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/currency_exchange_rates?source=GBP&target=EUR HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "currency_exchange_rates": [
 {
 "rate": "1.19111",
 "source": "GBP",
 "target": "EUR",
 "time": "2020-02-24T23:50:04.000Z"
 }
],
 "meta": {
 "cursors": {
 "after": null,
 "before": null
 },
 "limit": 50
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->currencyExchangeRates()->list([
 "params" => ["source" => "EUR", "target" => "GBP"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.currency_exchange_rates.list(params={"source": "EUR", "target": "GBP"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.currency_exchange_rates.list(params: { source: "EUR", target: "GBP" })

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.currencyExchangeRates().all().withSource("EUR").withTarget("GBP").execute()

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const currencyExchangeRates = await client.currencyExchangeRates.list();

// List the currency exchange rate for a source and target currency.
const currencyExchangeRates = await client.currencyExchangeRates.list({ source: 'EUR', target: 'GBP' });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var request = new GoCardless.Services.CurrencyExchangeRateListRequest()
{
 Source = "EUR",
 Target = "GBP"
};

var response = gocardless.CurrencyExchangeRates.All(request);
foreach (GoCardless.Resources.CurrencyExchangeRate rate in response)
{
 Console.WriteLine(rate.Rate);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 currencyExchangeRateListParams := gocardless.CurrencyExchangeRateListParams{
 Source: "EUR",
 Target: "GBP",
 }

 currencyExchangeRateListResult, err := client.CurrencyExchangeRates.List(context, currencyExchangeRateListParams)
 for _, currencyExchangeRate := range currencyExchangeRateListResult.CurrencyExchangeRates {
 fmt.Println(currencyExchangeRate.Id)
 }

}

 Customers

Customer objects hold the contact details for a customer. A customer can have several customer bank accounts, which in turn can have several Direct Debit mandates.

Properties

	id
	Unique identifier, beginning with “CU”.
	address_line1
	The first line of the customer’s address.
	address_line2
	The second line of the customer’s address.
	address_line3
	The third line of the customer’s address.
	city
	The city of the customer’s address.
	company_name
	Customer’s company name. Required unless a given_name and family_name are provided. For Canadian customers, the use of a company_name value will mean that any mandate created from this customer will be considered to be a “Business PAD” (otherwise, any mandate will be considered to be a “Personal PAD”).
	country_code
	ISO 3166-1 alpha-2 code.
	created_at
	Fixed timestamp, recording when this resource was created.
	danish_identity_number
	For Danish customers only. The civic/company number (CPR or CVR) of the customer. Must be supplied if the customer’s bank account is denominated in Danish krone (DKK).
	email
	Customer’s email address. Required in most cases, as this allows GoCardless to send notifications to this customer.
	family_name
	Customer’s surname. Required unless a company_name is provided.
	given_name
	Customer’s first name. Required unless a company_name is provided.
	language
	
ISO 639-1 code. Used as the language for notification emails sent by GoCardless if your organisation does not send its own (see compliance requirements). Currently only “en”, “fr”, “de”, “pt”, “es”, “it”, “nl”, “da”, “nb”, “sl”, “sv” are supported. If this is not provided, the language will be chosen based on the country_code (if supplied) or default to “en”.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	phone_number
	
ITU E.123 formatted phone number, including country code.
	postal_code
	The customer’s postal code.
	region
	The customer’s address region, county or department. For US customers a 2 letter ISO3166-2:US state code is required (e.g. CA for California).
	swedish_identity_number
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer. Must be supplied if the customer’s bank account is denominated in Swedish krona (SEK). This field cannot be changed once it has been set.

 Create a customer

Creates a new customer object.

Relative endpoint: POST /customers

Restricted: this endpoint is restricted to GoCardless Pro and GoCardless Enterprise accounts with approved payment pages.

Warning: this endpoint is a legacy API endpoint and does not support GoCardless’ newest features. We recommend using the Billing Requests API instead.

Parameters

	address_line1
	The first line of the customer’s address.
	address_line2
	The second line of the customer’s address.
	address_line3
	The third line of the customer’s address.
	city
	The city of the customer’s address.
	company_name
	Customer’s company name. Required unless a given_name and family_name are provided. For Canadian customers, the use of a company_name value will mean that any mandate created from this customer will be considered to be a “Business PAD” (otherwise, any mandate will be considered to be a “Personal PAD”).
	country_code
	ISO 3166-1 alpha-2 code.
	danish_identity_number
	For Danish customers only. The civic/company number (CPR or CVR) of the customer. Must be supplied if the customer’s bank account is denominated in Danish krone (DKK).
	email
	Customer’s email address. Required in most cases, as this allows GoCardless to send notifications to this customer.
	family_name
	Customer’s surname. Required unless a company_name is provided.
	given_name
	Customer’s first name. Required unless a company_name is provided.
	language
	
ISO 639-1 code. Used as the language for notification emails sent by GoCardless if your organisation does not send its own (see compliance requirements). Currently only “en”, “fr”, “de”, “pt”, “es”, “it”, “nl”, “da”, “nb”, “sl”, “sv” are supported. If this is not provided, the language will be chosen based on the country_code (if supplied) or default to “en”.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	phone_number
	
ITU E.123 formatted phone number, including country code.
	postal_code
	The customer’s postal code.
	region
	The customer’s address region, county or department. For US customers a 2 letter ISO3166-2:US state code is required (e.g. CA for California).
	swedish_identity_number
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer. Must be supplied if the customer’s bank account is denominated in Swedish krona (SEK). This field cannot be changed once it has been set.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/customers HTTP/1.1
Content-Type: application/json
{
 "customers": {
 "email": "user@example.com",
 "given_name": "Frank",
 "family_name": "Osborne",
 "address_line1": "27 Acer Road",
 "address_line2": "Apt 2",
 "city": "London",
 "postal_code": "E8 3GX",
 "country_code": "GB",
 "metadata": {
 "salesforce_id": "ABCD1234"
 }
 }
}

HTTP/1.1 201 Created
Location: /customers/CU123
Content-Type: application/json
{
 "customers": {
 "id": "CU123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "email": "user@example.com",
 "given_name": "Frank",
 "family_name": "Osborne",
 "address_line1": "27 Acer Road",
 "address_line2": "Apt 2",
 "address_line3": null,
 "city": "London",
 "region": null,
 "postal_code": "E8 3GX",
 "country_code": "GB",
 "language": "en",
 "phone_number": null,
 "swedish_identity_number": null,
 "danish_identity_number": null,
 "metadata": {
 "salesforce_id": "ABCD1234"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customers()->create([
 "params" => ["email" => "tim@gocardless.com",
 "given_name" => "Tim",
 "family_name" => "Rogers",
 "country_code" => "GB"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customers.create(params={
 "email": "user@example.com",
 "given_name": "Frank",
 "family_name": "Osborne",
 "address_line1": "27 Acer Road",
 "address_line2": "Apt 2",
 "city": "London",
 "postal_code": "E8 3GX",
 "country_code": "GB",
 "metadata": {
 "salesforce_id": "ABCD1234"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customers.create(
 params: {
 email: "user@example.com",
 given_name: "Jacob",
 family_name: "Pargin",
 country_code: "GB"
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Customer customer = client.customers().create()
 .withEmail("user@example.com")
 .withGivenName("Frank")
 .withFamilyName("Osborne")
 .withAddressLine1("27 Acer Road")
 .withAddressLine2("Apt 2")
 .withCity("London")
 .withPostalCode("E8 3GX")
 .withCountryCode("GB")
 .withMetadata("salesforce_id", "ABCD1234")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customer = await client.customers.create({
 email: "user@example.com",
 given_name: "Frank",
 family_name: "Osborne",
 address_line1: "27 Acer Road",
 address_line2: "Apt 2",
 city: "London",
 postal_code: "E8 3GX",
 country_code: "GB",
 metadata: {
 salesforce_id: "ABCD1234"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customerRequest = new GoCardless.Services.CustomerCreateRequest()
{
 Email = "user@example.com",
 GivenName = "Frank",
 FamilyName = "Osborne",
 AddressLine1 = "27 Acer Road",
 AddressLine2 = "Apt 2",
 City = "London",
 PostalCode = "E8 3GX",
 CountryCode = "GB",
 Metadata = new Dictionary<string, string>()
 {
 {"salesforce_id", "ABCD1234"}
 }
};

var customerResponse = await gocardless.Customers.CreateAsync(customerRequest);
GoCardless.Resources.Customer customer = customerResponse.Customer;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customerCreateParams := gocardless.CustomerCreateParams{
 AddressLine1: "27 Acer Road",
 AddressLine2: "Apt 2",
 City: "London",
 PostalCode: "E8 3GX",
 CountryCode: "GB",
 Email: "user@example.com",
 GivenName: "Frank",
 FamilyName: "Osborne",
 }

 customer, err := client.Customers.Create(context, customerCreateParams)

}

 List customers

Returns a cursor-paginated list of your customers.

Relative endpoint: GET /customers

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	limit
	Number of records to return.
	sort_direction
	The direction to sort in.
One of:

 	
 asc

	
 desc

	sort_field
	Field by which to sort records.
One of:

 	
 name

	
 company_name

	
 created_at

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/customers?after=CU123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": "CU000",
 "after": "CU456",
 },
 "limit": 50
 },
 "customers": [{
 "id": "CU123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "email": "user@example.com",
 "given_name": "Frank",
 "family_name": "Osborne",
 "address_line1": "27 Acer Road",
 "address_line2": "Apt 2",
 "address_line3": null,
 "city": "London",
 "region": null,
 "postal_code": "E8 3GX",
 "country_code": "GB",
 "language": "en",
 "metadata": {
 "salesforce_id": "ABCD1234"
 }
 }, {
 ...
 }]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customers()->list();

$client->customers()->list([
 "params" => ["created_at[gt]" => "2015-11-03T09:30:00Z"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customers.list().records

client.customers.list(params={"after": "CU123"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customers.list

@client.customers.list(
 params: {
 "created_at[gt]" => "2016-08-06T09:30:00Z"
 }
)

@client.customers.list.records.each { |customer| puts customer.inspect }

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (Customer customer : client.customers().all().execute()) {
 System.out.println(customer.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customer = await client.customers.list();

// List customers with a given currency.
await client.customers.list({ currency: "GBP" });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customerListResponse = gocardless.Customers.All();
foreach (GoCardless.Resources.Customer customer in customerListResponse)
{
 Console.WriteLine(customer.GivenName);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customerListParams := gocardless.CustomerListParams{
 Currency: "GBP",
 }

 customerListResult, err := client.Customers.List(context, customerListParams)
 for _, customer GivenName range customerListResult.Customers {
 fmt.Println(customer.GivenName)
 }

}

 Get a single customer

Retrieves the details of an existing customer.

Relative endpoint: GET /customers/CU123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/customers/CU123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "customers": {
 "id": "CU123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "email": "user@example.com",
 "given_name": "Frank",
 "family_name": "Osborne",
 "address_line1": "27 Acer Road",
 "address_line2": "Apt 2",
 "address_line3": null,
 "city": "London",
 "region": null,
 "postal_code": "E8 3GX",
 "country_code": "GB",
 "language": "en",
 "phone_number": null,
 "swedish_identity_number": null,
 "danish_identity_number": null,
 "metadata": {
 "salesforce_id": "ABCD1234"
 }
 }
}

GET https://api.gocardless.com/customers/CU123 HTTP/1.1

HTTP/1.1 410 Gone
Content-Type: application/json
{
 "error": {
 "documentation_url": "https://developer.gocardless.com/api-reference#customer_data_removed",
 "message": "This customer data has been removed",
 "type": "invalid_api_usage",
 "errors": [
 {
 "reason": "customer_removed",
 "message": "This customer data has been removed"
 }
],
 "code": 410,
 "request_id": "deadbeef-0000-4000-0000-444400004444"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customers()->get("CU123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customers.get("CU123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customers.get("CU123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Customer customer = client.customers().get("CU123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customer = await client.customers.find("CU123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customerResponse = await gocardless.Customers.GetAsync("CU0123");
GoCardless.Resources.Customer customer = customerResponse.Customer;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customer, err := client.Customers.Get(context, "CU123")

}

 Update a customer

Updates a customer object. Supports all of the fields supported when creating a customer.

Relative endpoint: PUT /customers/CU123

Parameters

	address_line1
	The first line of the customer’s address.
	address_line2
	The second line of the customer’s address.
	address_line3
	The third line of the customer’s address.
	city
	The city of the customer’s address.
	company_name
	Customer’s company name. Required unless a given_name and family_name are provided. For Canadian customers, the use of a company_name value will mean that any mandate created from this customer will be considered to be a “Business PAD” (otherwise, any mandate will be considered to be a “Personal PAD”).
	country_code
	ISO 3166-1 alpha-2 code.
	danish_identity_number
	For Danish customers only. The civic/company number (CPR or CVR) of the customer. Must be supplied if the customer’s bank account is denominated in Danish krone (DKK).
	email
	Customer’s email address. Required in most cases, as this allows GoCardless to send notifications to this customer.
	family_name
	Customer’s surname. Required unless a company_name is provided.
	given_name
	Customer’s first name. Required unless a company_name is provided.
	language
	
ISO 639-1 code. Used as the language for notification emails sent by GoCardless if your organisation does not send its own (see compliance requirements). Currently only “en”, “fr”, “de”, “pt”, “es”, “it”, “nl”, “da”, “nb”, “sl”, “sv” are supported. If this is not provided, the language will be chosen based on the country_code (if supplied) or default to “en”.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	phone_number
	
ITU E.123 formatted phone number, including country code.
	postal_code
	The customer’s postal code.
	region
	The customer’s address region, county or department. For US customers a 2 letter ISO3166-2:US state code is required (e.g. CA for California).
	swedish_identity_number
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer. Must be supplied if the customer’s bank account is denominated in Swedish krona (SEK). This field cannot be changed once it has been set.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/customers/CU123 HTTP/1.1
Content-Type: application/json
{
 "customers": {
 "email": "updated_user@example.com",
 "given_name": "Jenny",
 "family_name": "Osborne",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "customers": {
 "id": "CU123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "email": "updated_user@example.com",
 "given_name": "Frank",
 "family_name": "Osborne",
 "address_line1": "29 Acer Road",
 "address_line2": "Apt 3",
 "address_line3": "Block 4",
 "city": "London",
 "region": null,
 "postal_code": "E8 3GX",
 "country_code": "GB",
 "language": "en",
 "phone_number": null,
 "swedish_identity_number": null,
 "danish_identity_number": null,
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 }
}

PUT https://api.gocardless.com/customers/CU123 HTTP/1.1

HTTP/1.1 410 Gone
Content-Type: application/json
{
 "error": {
 "documentation_url": "https://developer.gocardless.com/api-reference#customer_data_removed",
 "message": "This customer data has been removed",
 "type": "invalid_api_usage",
 "errors": [
 {
 "reason": "customer_removed",
 "message": "This customer data has been removed"
 }
],
 "code": 410,
 "request_id": "deadbeef-0000-4000-0000-444400004444"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customers()->update("CU123", [
 "params" => ["email" => "tim@gocardless.com"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customers.update("CU123", params={
 "email": "updated_user@example.com"
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customers.update(
 "CU123",
 params: {
 metadata: { custom_reference: "EXAMPLELTD01" }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.customers().update("CU123")
 .withEmail("updated_user@example.com")
 .withGivenName("Jenny")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customer = await client.customers.update(
 "CU123",
 {
 email: "updated_user@example.com",
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customerRequest = new GoCardless.Services.CustomerUpdateRequest()
{
 Metadata = new Dictionary<string, string>()
 {
 {"custom_reference", "NEWREFERENCE001"}
 }
};
var customerResponse = await gocardless.Customers.UpdateAsync("CU0123", customerRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customerUpdateParams := gocardless.CustomerUpdateParams{
 Email: "updated_user@example.com",
 }

 customer, err := client.Customers.Update(context, "CU123", customerUpdateParams)

}

 Remove a customer

Removed customers will not appear in search results or lists of customers (in our API
or exports), and it will not be possible to load an individually removed customer by
ID.

The action of removing a customer cannot be reversed, so please use with care.

Relative endpoint: DELETE /customers/CU123

Parameters

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 DELETE https://api.gocardless.com/customers/CU123 HTTP/1.1

HTTP/1.1 204 No Content

DELETE https://api.gocardless.com/customers/CU123 HTTP/1.1

HTTP/1.1 410 Gone
Content-Type: application/json
{
 "error": {
 "documentation_url": "https://developer.gocardless.com/api-reference#customer_data_removed",
 "message": "This customer data has been removed",
 "type": "invalid_api_usage",
 "errors": [
 {
 "reason": "customer_removed",
 "message": "This customer data has been removed"
 }
],
 "code": 410,
 "request_id": "deadbeef-0000-4000-0000-444400004444"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customers()->remove("CU123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customers.remove("CU123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customers.remove("CU123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.customers().remove("CU123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customer = await client.customers.remove("CU123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

await gocardless.Customers.RemoveAsync("CU0123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customer, err := client.Customers.Remove(context, "CU123")

}

 Customer Bank Accounts

Customer Bank Accounts hold the bank details of a customer. They always belong to a customer, and may be linked to several Direct Debit mandates.

Note that customer bank accounts must be unique, and so you will encounter a bank_account_exists error if you try to create a duplicate bank account. You may wish to handle this by updating the existing record instead, the ID of which will be provided as links[customer_bank_account] in the error response.

Note: To ensure the customer’s bank accounts are valid, verify them first
using
bank_details_lookups,
before proceeding with creating the accounts

Properties

	id
	Unique identifier, beginning with “BA”.
	account_holder_name
	Name of the account holder, as known by the bank. Usually this is the same as the name stored with the linked creditor. This field will be transliterated, upcased and truncated to 18 characters. This field is required unless the request includes a customer bank account token.
	account_number_ending
	The last few digits of the account number. Currently 4 digits for NZD bank accounts and 2 digits for other currencies.
	account_type
	Bank account type. Required for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	bank_name
	Name of bank, taken from the bank details.
	country_code
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	created_at
	Fixed timestamp, recording when this resource was created.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	enabled
	Boolean value showing whether the bank account is enabled or disabled.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	links[customer]
	ID of the customer that owns this bank account.

 Create a customer bank account

Creates a new customer bank account object.

There are three different ways to supply bank account details:

	
 Local details

	
 IBAN

	
 Customer Bank Account Tokens

For more information on the different fields required in each country, see local bank details.

Relative endpoint: POST /customer_bank_accounts

Note: this endpoint is a legacy API endpoint and does not support GoCardless’ newest features. We recommend using the Billing Requests API instead.

Restricted: this endpoint is restricted to GoCardless Pro and GoCardless Enterprise accounts with approved payment pages.

Parameters

	account_holder_name
	Name of the account holder, as known by the bank. Usually this is the same as the name stored with the linked creditor. This field will be transliterated, upcased and truncated to 18 characters. This field is required unless the request includes a customer bank account token.
	account_number
	Bank account number - see local details for more information. Alternatively you can provide an iban.
	account_type
	Bank account type. Required for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	bank_code
	Bank code - see local details for more information. Alternatively you can provide an iban.
	branch_code
	Branch code - see local details for more information. Alternatively you can provide an iban.
	country_code
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	iban
	International Bank Account Number. Alternatively you can provide local details. IBANs are not accepted for Swedish bank accounts denominated in SEK - you must supply local details.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	links[customer]
	
required ID of the customer that owns this bank account.
	links[customer_bank_account_token]
	ID of a customer bank account token to use in place of bank account parameters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/customer_bank_accounts HTTP/1.1
Content-Type: application/json
{
 "customer_bank_accounts": {
 "account_number": "55779911",
 "branch_code": "200000",
 "account_holder_name": "Frank Osborne",
 "country_code": "GB",
 "links": {
 "customer": "CU123"
 }
 }
}

HTTP/1.1 201 Created
Location: /customer_bank_accounts/BA123
Content-Type: application/json
{
 "customer_bank_accounts": {
 "id": "BA123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "account_holder_name": "Frank Osborne",
 "account_number_ending": "11",
 "country_code": "GB",
 "currency": "GBP",
 "bank_name": "BARCLAYS BANK PLC",
 "metadata": {},
 "enabled": true,
 "links": {
 "customer": "CU123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customerBankAccounts()->create([
 "params" => ["account_number" => "55779911",
 "branch_code" => "200000",
 "account_holder_name" => "Frank Osborne",
 "country_code" => "GB",
 "links" => ["customer" => "CU123"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customer_bank_accounts.create(params={
 "account_number": "55779911",
 "branch_code": "200000",
 "account_holder_name": "Frank Osborne",
 "country_code": "GB",
 "links": {
 "customer": "CU123"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customer_bank_accounts.create(
 params: {
 account_holder_name: "Fran Cosborne",
 account_number: "55779911",
 branch_code: "200000",
 country_code: "GB",
 links: {
 customer: "CU123"
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

CustomerBankAccount customerBankAccount = client.customerBankAccounts().create()
 .withAccountNumber("55779911")
 .withBranchCode("200000")
 .withAccountHolderName("Frank Osborne")
 .withCountryCode("GB")
 .withLinksCustomer("CU123")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customerBankAccount = await client.customerBankAccounts.create({
 account_number: "55779911",
 branch_code: "200000",
 account_holder_name: "Frank Osborne",
 country_code: "GB",
 links: {
 customer: "CU123"
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customerBankAccountRequest = new GoCardless.Services.CustomerBankAccountCreateRequest()
{
 AccountHolderName = "Example Ltd",
 AccountNumber = "55779911",
 BranchCode = "200000",
 CountryCode = "GB",
 Links = new GoCardless.Services.CustomerBankAccountCreateRequest.CustomerBankAccountLinks()
 {
 Customer = "CU0123"
 }
};

var customerBankAccountResponse = await gocardless.CustomerBankAccounts.CreateAsync(customerBankAccountRequest);
GoCardless.Resources.CustomerBankAccount customerBankAccount = customerBankAccountResponse.CustomerBankAccount;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customerBankAccountCreateParams := gocardless.CustomerBankAccountCreateParams{
 AccountNumber: "55779911",
 BranchCode: "200000",
 AccountHolderName: "Frank Osborne",
 CountryCode: "GB",
 Links: gocardless.CustomerBankAccountCreateParamsLinks{
 Customer: "CU123",
 },
 }

 customerBankAccount, err := client.CustomerBankAccounts.Create(context, customerBankAccountCreateParams)

}

 List customer bank accounts

Returns a cursor-paginated list of your bank accounts.

Relative endpoint: GET /customer_bank_accounts

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	customer
	Unique identifier, beginning with “CU”.
	enabled
	Get enabled or disabled customer bank accounts.
	limit
	Number of records to return.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/customer_bank_accounts HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 },
 "customer_bank_accounts": [{
 "id": "BA123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "account_holder_name": "Frank Osborne",
 "account_number_ending": "11",
 "account_type": null,
 "country_code": "GB",
 "currency": "GBP",
 "bank_name": "BARCLAYS BANK PLC",
 "metadata": {},
 "enabled": true,
 "links": {
 "customer": "CU123"
 }
 }]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customerBankAccounts()->list();

$client->customerBankAccounts()->list([
 "params" => ["customer" => "CU123",
 "enabled" => true]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customer_bank_accounts.list(params={"customer": "CU123"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customer_bank_accounts.list

@client.customer_bank_accounts.list(
 params: {
 customer: "CU123",
 enabled: true
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (CustomerBankAccount customerBankAccount : client.customerBankAccounts().all().withCustomer("CU123").withEnabled(true).execute()) {
 System.out.println(customerBankAccount.getAccountHolderName());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customerBankAccount = await client.customerBankAccounts.list();

// List all 'enabled' customer bank accounts.
await client.customerBankAccounts.list({ enabled: true });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customerBankAccountRequest = new GoCardless.Services.CustomerBankAccountListRequest()
{
 Customer = "CU000123"
};

var customerBankAccountListResponse = gocardless.CustomerBankAccounts.All(customerBankAccountRequest);
foreach (GoCardless.Resources.CustomerBankAccount customerBankAccount in customerBankAccountListResponse)
{
 Console.WriteLine(customerBank.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customerBankAccountListParams := gocardless.CustomerBankAccountListParams{
 Enabled: true,
 }

 customerBankAccountListResult, err := client.CustomerBankAccounts.List(context, customerBankAccountListParams)
 for _, customerBankAccount := range customerBankAccountListResult.CustomerBankAccounts {
 fmt.Println(customerBankAccount.Id)
 }

}

 Get a single customer bank account

Retrieves the details of an existing bank account.

Relative endpoint: GET /customer_bank_accounts/BA123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/customer_bank_accounts/BA123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "customer_bank_accounts": {
 "id": "BA123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "account_number_ending": "11",
 "account_holder_name": "Frank Osborne",
 "account_type": null,
 "country_code": "GB",
 "currency": "GBP",
 "bank_name": "BARCLAYS BANK PLC",
 "metadata": {},
 "enabled": true,
 "links": {
 "customer": "CU123"
 }
 }
}

GET https://api.gocardless.com/customer_bank_accounts/BA123 HTTP/1.1

HTTP/1.1 410 Gone
Content-Type: application/json
{
 "error": {
 "documentation_url": "https://developer.gocardless.com/api-reference#customer_data_removed",
 "message": "This customer data has been removed",
 "type": "invalid_api_usage",
 "errors": [
 {
 "reason": "customer_removed",
 "message": "This customer data has been removed"
 }
],
 "code": 410,
 "request_id": "deadbeef-0000-4000-0000-444400004444"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customerBankAccounts()->get("BA123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customer_bank_accounts.get("BA123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customer_bank_accounts.get("BA123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

CustomerBankAccount customerBankAccount = client.customerBankAccounts.get("BA123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customerBankAccount = await client.customerBankAccounts.find("BA123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customerBankAccountResponse = await gocardless.CustomerBankAccounts.GetAsync("BA0123");
GoCardless.Resources.CustomerBankAccount customerBankAccount = customerBankAccountResponse.CustomerBankAccount;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customerBankAccount, err := client.CustomerBankAccounts.Get(context, "BA123")

}

 Update a customer bank account

Updates a customer bank account object. Only the metadata parameter is allowed.

Relative endpoint: PUT /customer_bank_accounts/BA123

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/customer_bank_accounts/BA123 HTTP/1.1
Content-Type: application/json
{
 "customer_bank_accounts": {
 "metadata": {
 "key": "value"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "customer_bank_accounts": {
 "id": "BA123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "account_number_ending": "11",
 "account_holder_name": "Frank Osborne",
 "account_type": null,
 "country_code": "GB",
 "currency": "GBP",
 "bank_name": "BARCLAYS BANK PLC",
 "metadata": {
 "key": "value"
 },
 "enabled": true,
 "links": {
 "customer": "CU123"
 }
 }
}

PUT https://api.gocardless.com/customer_bank_accounts/BA123 HTTP/1.1

HTTP/1.1 410 Gone
Content-Type: application/json
{
 "error": {
 "documentation_url": "https://developer.gocardless.com/api-reference#customer_data_removed",
 "message": "This customer data has been removed",
 "type": "invalid_api_usage",
 "errors": [
 {
 "reason": "customer_removed",
 "message": "This customer data has been removed"
 }
],
 "code": 410,
 "request_id": "deadbeef-0000-4000-0000-444400004444"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customerBankAccounts()->update("BA123", [
 "params" => ["metadata" => ["key" => "value"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customer_bank_accounts.update("BA123", params={
 "metadata": {"key": "value"}
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customer_bank_accounts.update(
 "BA123",
 params: {
 metadata: { description: "Business account" }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.customerBankAccounts().update("BA123")
 .withMetadata("description", "Business account")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customerBankAccount = await client.customerBankAccounts.update(
 "BA123",
 {
 metadata: {
 key: "value"
 }
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customerBankAccountRequest = new GoCardless.Services.CustomerBankAccountUpdateRequest()
{
 Metadata = new Dictionary<string, string>()
 {
 {"description", "Business account"}
 }
};

var customerBankAccountResponse = await gocardless.CustomerBankAccounts.UpdateAsync("BA0123", customerBankAccountRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customerBankAccountUpdateParams := gocardless.CustomerBankAccountUpdateParams{
 Metadata: map[string]interface{}{"key": "value"},
 }

 customerBankAccount, err := client.CustomerBankAccounts.Update(context, customerBankAccountUpdateParams)

}

 Disable a customer bank account

Immediately cancels all associated mandates and cancellable payments.

This will return a disable_failed error if the bank account has already been disabled.

A disabled bank account can be re-enabled by creating a new bank account resource with the same details.

Relative endpoint: POST /customer_bank_accounts/BA123/actions/disable

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/customer_bank_accounts/BA123/actions/disable HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "customer_bank_accounts": {
 "id": "BA123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "account_number_ending": "11",
 "account_holder_name": "Frank Osborne",
 "account_type": null,
 "country_code": "GB",
 "currency": "GBP",
 "bank_name": "BARCLAYS BANK PLC",
 "metadata": {},
 "enabled": false,
 "links": {
 "customer": "CU123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customerBankAccounts()->disable("BA123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customer_bank_accounts.disable("BA123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customer_bank_accounts.disable("BA123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.customerBankAccounts.disable("BA123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customerBankAccount = await client.customerBankAccounts.disable("BA123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customerBankAccountResponse = await gocardless.CustomerBankAccounts.DisableAsync("BA0123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customerBankAccount, err := client.CustomerBankAccounts.Disable(context, "BA123")

}

 Customer Notifications

Customer Notifications represent the notification which is due to be sent to a customer
after an event has happened. The event, the resource and the customer to be notified
are all identified in the links property.

Note that these are ephemeral records - once the notification has been actioned in some
way, it is no longer visible using this API.

Restricted: This API is currently only available for approved integrators - please get in touch if you would like to use this API.

Properties

	id
	The id of the notification.
	action_taken
	The action that was taken on the notification. Currently this can only be handled,
which means the integrator sent the notification themselves.
	action_taken_at
	Fixed timestamp, recording when this
action was taken.
	action_taken_by
	A string identifying the integrator who was able to handle this notification.
	type
	The type of notification the customer shall receive.
One of:

 	
 payment_created

	
 payment_cancelled

	
 mandate_created

	
 mandate_blocked

	
 subscription_created

	
 subscription_cancelled

	
 instalment_schedule_created

	
 instalment_schedule_cancelled

	links[customer]
	The customer who should be contacted with this notification.
	links[event]
	The event that triggered the notification to be scheduled.
	links[mandate]
	The identifier of the related mandate.
	links[payment]
	The identifier of the related payment.
	links[refund]
	The identifier of the related refund.
	links[subscription]
	The identifier of the related subscription.

 Handle a notification

“Handling” a notification means that you have sent the notification yourself (and
don’t want GoCardless to send it).
If the notification has already been actioned, or the deadline to notify has passed,
this endpoint will return an already_actioned error and you should not take
further action. This endpoint takes no additional parameters.

Relative endpoint: POST /customer_notifications/PCN123/actions/handle

Parameters

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/customer_notifications/PCN123/actions/handle HTTP/1.1

HTTP/1.1 201 Created
Content-Type: application/json
{
 "customer_notifications": {
 "id": "PCN123",
 "type": "payment_created",
 "action_taken": "handled",
 "action_taken_at": "2018-08-01T13:42:56.000Z",
 "action_taken_by": "Partner name",
 "links": {
 "customer": "CU123",
 "event": "EV123",
 "payment": "PM123"
 }
 }
}

POST https://api.gocardless.com/customer_notifications/PCN123/actions/handle HTTP/1.1

HTTP/1.1 403 Forbidden
Content-Type: application/json
{
 "error": {
 "message": "You are not authorised to handle notifications of this type.",
 "documentation_url": "https://developer.gocardless.com/api-reference#notification_type_forbidden",
 "type": "gocardless",
 "code": 403,
 "request_id": "900ceabb-c55d-4006-80b7-a7a40c171e31",
 "errors": [
 {
 "reason": "notification_type_forbidden",
 "message": "You are not authorised to handle notifications of this type."
 }
]
 }
}

POST https://api.gocardless.com/customer_notifications/PCN123/actions/handle HTTP/1.1

HTTP/1.1 403 Forbidden
Content-Type: application/json
{
 "error": {
 "message": "You are not the notification owner for this resource.",
 "documentation_url": "https://developer.gocardless.com/api-reference#not_notification_owner",
 "type": "gocardless",
 "code": 403,
 "request_id": "900ceabb-c55d-4006-80b7-a7a40c171e31",
 "errors": [
 {
 "reason": "not_notification_owner",
 "message": "You are not the notification owner for this resource."
 }
]
 }
}

POST https://api.gocardless.com/customer_notifications/PCN123/actions/handle HTTP/1.1

HTTP/1.1 410 Gone
Content-Type: application/json
{
 "error": {
 "message": "This notification can no longer be handled.",
 "documentation_url": "https://developer.gocardless.com/api-reference#already_actioned",
 "type": "gocardless",
 "code": 410,
 "request_id": "900ceabb-c55d-4006-80b7-a7a40c171e31",
 "errors": [
 {
 "reason": "already_actioned",
 "message": "This notification can no longer be handled."
 }
]
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->customerNotifications()->handle("PCN123")

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.customer_notifications.handle("PCN123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.customer_notifications.handle("PCN123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

CustomerNotification customerNotification = client.customerNotifications().handle("PCN123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const customerNotification = await client.customerNotifications.handle("PCN123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customerNotificationResponse = await gocardless.CustomerNotifications.HandleAsync("PCN123");
GoCardless.Resources.CustomerNotification customerNotification = customerNotificationResponse.CustomerNotification;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 customerNotificationHandleParams := map[string]interface{}{}
 customerNotification, err := client.CustomerNotifications.Handle(context, "PCN123", customerNotificationHandleParams)

}

 Events

Events are stored for all webhooks. An event refers to a resource which has been updated, for example a payment which has been collected, or a mandate which has been transferred. Event creation is an asynchronous process, so it can take some time between an action occurring and its corresponding event getting included in API responses. See here for a complete list of event types.

Properties

	id
	Unique identifier, beginning with “EV”.
	action
	What has happened to the resource. See Event Actions for the possible actions.
	created_at
	Fixed timestamp, recording when this resource was created.
	customer_notifications
	Present only in webhooks when an integrator is authorised to send their own
notifications. See here
for further information.

 Each instance will contain these properties:

 	
 deadline: Time after which GoCardless will send the notification by email.

	
 id: The id of the notification.

	
 mandatory: Whether or not the notification must be sent.

	
 type: See here for a complete list of customer notification types.

	details[bank_account_id]
	When we send a creditor new_payout_currency_added webhook, we also send the bank account id of the new account
	details[cause]
	What triggered the event. Note: cause is our simplified and predictable key indicating what triggered the event.
	details[currency]
	When we send a creditor new_payout_currency_added webhook, we also send the currency of the new account
	details[description]
	Human readable description of the cause. Note: Changes to event descriptions are not considered breaking.
	details[not_retried_reason]
	When will_attempt_retry is set to false, this field will contain
the reason the payment was not retried. This can be one of:

 	
 failure_filter_applied: The payment won’t be intelligently retried as
 there is a high likelihood of failure on retry.

	
 other: The payment won’t be intelligently retried due to any other
 reason.

	details[origin]
	Who initiated the event. One of:

 	
 bank: this event was triggered by a report from the banks

	
 gocardless: this event was performed by GoCardless automatically

	
 api: this event was triggered by an API endpoint

	
 customer: this event was triggered by a Customer

	
 payer: this event was triggered by a Payer

	details[property]
	When we send a creditor creditor_updated webhook, this tells you which property on the creditor has been updated
	details[reason_code]
	Set when a bank is the origin of the event. This is the reason code received in the report from the customer’s bank. See the GoCardless Direct Debit guide for information on the meanings of different reason codes. Note: reason_code is payment scheme-specific and can be inconsistent between banks.
	details[scheme]
	A bank payment scheme. Set when a bank is the origin of the event.
	details[will_attempt_retry]
	Whether the payment will be retried automatically. Set on a payment failed event.
	metadata
	The metadata that was passed when making the API request that triggered the event
(for instance, cancelling a mandate).

 This field will only be populated if the details[origin] field is api otherwise it will be an empty object.

	resource_metadata
	The metadata of the resource that the event is for. For example, this field will have the same
value of the mandate[metadata] field on the response you would receive from performing a GET request on a mandate.
	resource_type
	The resource type for this event. One of:

 	
 billing_requests

	
 creditors

	
 instalment_schedules

	
 mandates

	
 payer_authorisations

	
 payments

	
 payouts

	
 refunds

	
 scheme_identifiers

	
 subscriptions

	links[bank_authorisation]
	ID of a bank authorisation.
	links[billing_request]
	ID of a billing request.
	links[billing_request_flow]
	ID of a billing request flow.
	links[creditor]
	If resource_type is creditor, this is the ID of the creditor which has been updated.
	links[customer]
	ID of a customer.
	links[customer_bank_account]
	ID of a customer bank account.
	links[instalment_schedule]
	If resource_type is instalment_schedule, this is the ID of the instalment schedule which has been updated.
	links[mandate]
	If resource_type is mandates, this is the ID of the mandate which has been updated.
	links[mandate_request_mandate]
	If resource_type is billing_requests, this is the ID of the mandate which has been created.
	links[new_customer_bank_account]
	This is only included for mandate transfer events, when it is the ID of the customer bank account which the mandate is being transferred to.
	links[new_mandate]
	This is only included for mandate replaced events, when it is the ID of the new mandate that replaces the existing mandate.
	links[organisation]
	If the event is included in a webhook to an OAuth app, this is the ID of the account to which it belongs.
	links[parent_event]
	If this event was caused by another, this is the ID of the cause. For example, if a mandate is cancelled it automatically cancels all pending payments associated with it; in this case, the payment cancellation events would have the ID of the mandate cancellation event in this field.
	links[payer_authorisation]
	ID of a payer authorisation.
	links[payment]
	If resource_type is payments, this is the ID of the payment which has been updated.
	links[payment_request_payment]
	If resource_type is billing_requests, this is the ID of the payment which has been created for Instant Bank Payment.
	links[payout]
	If resource_type is payouts, this is the ID of the payout which has been updated.
	links[previous_customer_bank_account]
	This is only included for mandate transfer events, when it is the ID of the customer bank account which the mandate is being transferred from.
	links[refund]
	If resource_type is refunds, this is the ID of the refund which has been updated.
	links[scheme_identifier]
	If resource_type is scheme_identifiers, this is the ID of the scheme_identifier which has been updated.
	links[subscription]
	If resource_type is subscription, this is the ID of the subscription which has been updated.

 List events

Returns a cursor-paginated list of your events.

Relative endpoint: GET /events

Parameters

	action
	Limit to events with a given action.
	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	billing_request
	ID of a billing request. If specified, this endpoint will return all events for the given billing request.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	creditor
	ID of an creditor. If specified, this endpoint will return all events for the given creditor.
	include
	Includes linked resources in the response. Must be used with the resource_type parameter specified. The include should be one of:

 	
 billing_request

	
 creditor

	
 instalment_schedule

	
 mandate

	
 payer_authorisation

	
 payment

	
 payout

	
 refund

	
 scheme_identifier

	
 subscription

	instalment_schedule
	ID of an instalment schedule. If specified, this endpoint will return all events for the given instalment schedule.
	limit
	Number of records to return.
	mandate
	ID of a mandate. If specified, this endpoint will return all events for the given mandate.
	parent_event
	ID of an event. If specified, this endpoint will return all events whose parent_event is the given event ID.
	payer_authorisation
	ID of a payer authorisation.
	payment
	ID of a payment. If specified, this endpoint will return all events for the given payment.
	payout
	ID of a payout. If specified, this endpoint will return all events for the given payout.
	refund
	ID of a refund. If specified, this endpoint will return all events for the given refund.
	resource_type
	Type of resource that you’d like to get all events for.
Cannot be used together with the billing_request, creditor, instalment_schedule, mandate, payer_authorisation, payment, payout, refund, scheme_identifier or subscription parameters.
The type can be one of:

 	
 billing_requests

	
 creditors

	
 instalment_schedules

	
 mandates

	
 payer_authorisations

	
 payments

	
 payouts

	
 refunds

	
 scheme_identifiers

	
 subscriptions

	scheme_identifier
	ID of a scheme identifier. If specified, this endpoint will return all events for the given scheme identifier.
	subscription
	ID of a subscription. If specified, this endpoint will return all events for the given subscription.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/events HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "after": null,
 "before": null
 },
 "limit": 50
 },
 "events":[
 {
 "id": "EV123",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "mandates",
 "action": "cancelled",
 "details": {
 "origin": "bank",
 "cause": "bank_account_disabled",
 "description": "Customer's bank account closed",
 "scheme": "bacs",
 "reason_code": "ADDACS-B"
 },
 "metadata": {},
 "resource_metadata": { "order_id": "123" },
 "links": {
 "mandate": "MD123"
 }
 },
 {
 "id": "EV456",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payments",
 "action": "cancelled",
 "details": {
 "origin": "bank",
 "cause": "mandate_cancelled",
 "description": "The mandate for this payment was cancelled at a bank branch.",
 "scheme": "bacs",
 "reason_code": "ADDACS-B"
 },
 "metadata": {},
 "resource_metadata": { "order_dispatch_date": "2014-05-22" },
 "links": {
 "payment": "PM123",
 "parent_event": "EV123"
 }
 }
]
}

GET https://api.gocardless.com/events?resource_type=payments&include=payment HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "after": null,
 "before": null
 },
 "limit": 50
 },
 "events":[
 {
 "id": "EV456",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payments",
 "action": "cancelled",
 "details": {
 "origin": "bank",
 "cause": "mandate_cancelled",
 "description": "The mandate for this payment was cancelled at a bank branch.",
 "scheme": "bacs",
 "reason_code": "ADDACS-B"
 },
 "metadata": {},
 "resource_metadata": { "order_dispatch_date": "2014-05-22" },
 "links": {
 "payment": "PM123",
 "parent_event": "EV123"
 }
 }
],
 "linked": {
 "payments": [
 {
 "id": "PM123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "charge_date": "2014-05-15",
 "amount": 100,
 "description": null,
 "currency": "GBP",
 "status": "paid_out",
 "reference": "WINEBOX001",
 "metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "amount_refunded": 0,
 "links": {
 "mandate": "MD123",
 "creditor": "CR123"
 }
 }
]
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->events()->list();

$client->events()->list([
 "params" => ["resource_type" => "payments"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.events.list().records

client.events.list(params={"resource_type": "payments"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.events.list

@client.events.list(params: { resource_type: "payments" })

@client.events.list.records.each { |event| puts event.inspect }

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (Event event : client.events().all().withResourceType("payments").execute()) {
 System.out.println(event.getAction());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const events = await client.events.list();

// List all events of a given resource type.
const events = await client.events.list({ resource_type: "payments" });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var eventRequest = new GoCardless.Services.EventListRequest()
{
 ResourceType = GoCardless.Services.EventListRequest.EventResourceType.Payments
};

var eventListResponse = gocardless.Events.All(eventRequest);
foreach (GoCardless.Resources.Event eventResource in eventListResponse)
{
 Console.WriteLine(eventResource.Action);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 eventListParams := gocardless.EventListParams{
 ResourceType: "payments",
 }

 eventListResult, err := client.Events.List(context, eventListParams)
 for _, event := range eventListResult.Events {
 fmt.Println(event.Action)
 }

}

 Get a single event

Retrieves the details of a single event.

Relative endpoint: GET /events/EV123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payments",
 "action": "confirmed",
 "details": {
 "origin": "gocardless",
 "cause": "payment_confirmed",
 "description": "Payment confirmed"
 },
 "metadata": {},
 "resource_metadata": { "order_dispatch_date": "2014-05-22" },
 "links": {
 "payment": "PM123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->events()->get("EV123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.events.get("EV123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.events.get("EV123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Event event = client.events().get("EV123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const event = await client.events.find("EV123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var eventResponse = await gocardless.Events.GetAsync("EV0123");
GoCardless.Resources.Event eventResource = eventResponse.Event;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 event, err := client.Events.Get(context, "EV123")

}

 Reconciling Payouts with Events

When a payout is created not only does it have an event created for it, but all payments and refunds within that payout have events created for them too. If you know the payout’s ID, you can fetch all of these events using two API requests.

The first step is to find the “paid” event for the Payout you’re interested in. You can do this by filtering events based on the ID of the payout and the action, which is “paid”:

GET https://api.gocardless.com/events?payout=PY123&action=paid

To find child events for a payout, filter for events with a parent_event equal to the Payout’s paid event:

GET https://api.gocardless.com/events?parent_event=EV123

This will return a paginated list of all child events for payments and refunds associated with the payout.

If you’d also like to return the associated payments or refunds, you can scope the request to a resource_type
and include those resources:

GET https://api.gocardless.com/events?parent_event=EV123&resource_type=payments&include=payment

GET https://api.gocardless.com/events?parent_event=EV123&resource_type=refunds&include=refund

 HTTP

 HTTP
 GET https://api.gocardless.com/events?payout=PY123&action=paid HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "after": null,
 "before": null
 },
 "limit": 50
 },
 "events": [
 {
 "id": "EV123",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payouts",
 "action": "paid",
 "details": {
 "origin": "gocardless",
 "cause": "payout_paid",
 "description": "Payout sent"
 },
 "metadata": {},
 "links": {
 "payout": "PO123"
 }
 }
]
}

GET https://api.gocardless.com/events?parent_event=EV123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "after": null,
 "before": null
 },
 "limit": 50
 },
 "events": [
 {
 "id": "EV456",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payments",
 "action": "paid_out",
 "details": {
 "origin": "gocardless",
 "cause": "payment_paid_out",
 "description": "The payment has been paid out by GoCardless."
 },
 "metadata": {},
 "links": {
 "payment": "PM123"
 }
 }
]
}

 Instalment Schedules

Instalment schedules are objects which represent a collection of related payments, with the
intention to collect the total_amount specified. The API supports both schedule-based
creation (similar to subscriptions) as well as explicit selection of differing payment
amounts and charge dates.

Unlike subscriptions, the payments are created immediately, so the instalment schedule
cannot be modified once submitted and instead can only be cancelled (which will cancel
any of the payments which have not yet been submitted).

Customers will receive a single notification about the complete schedule of collection.

Properties

	id
	Unique identifier, beginning with “IS”.
	created_at
	Fixed timestamp, recording when this resource was created.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	name
	Name of the instalment schedule, up to 100 chars. This name will also be
copied to the payments of the instalment schedule if you use schedule-based creation.
	payment_errors
	If the status is creation_failed, this property will be populated with validation
failures from the individual payments, arranged by the index of the payment that
failed.
	status
	One of:

 	
 pending: we’re waiting for GC to create the payments

	
 active: the payments have been created, and the schedule is active

	
 creation_failed: payment creation failed

	
 completed: we have passed the date of the final payment and all payments have been collected

	
 cancelled: the schedule has been cancelled

	
 errored: one or more payments have failed

	total_amount
	The total amount of the instalment schedule, defined as the sum of all individual
payments, in the lowest denomination for the currency (e.g. pence in GBP, cents in
EUR). If the requested payment amounts do not sum up correctly, a validation error
will be returned.
	links[customer]
	ID of the associated customer.
	links[mandate]
	ID of the associated mandate which the instalment schedule will create payments against.
	payments
	Array of IDs of the associated payments

 Create (with dates)

Creates a new instalment schedule object, along with the associated payments. This
API is recommended if you know the specific dates you wish to charge. Otherwise,
please check out the scheduling version.

The instalments property is an array of payment properties (amount and
charge_date).

It can take quite a while to create the associated payments, so the API will return
the status as pending initially. When processing has completed, a subsequent GET
request for the instalment schedule will either have the status success and link
to the created payments, or the status error and detailed information about the
failures.

Relative endpoint: POST /instalment_schedules

Parameters

	currency
	
required ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	instalments
	
required An explicit array of instalment payments, each specifying at least an amount and charge_date.
	name
	
required Name of the instalment schedule, up to 100 chars. This name will also be
copied to the payments of the instalment schedule if you use schedule-based creation.
	total_amount
	
required The total amount of the instalment schedule, defined as the sum of all individual
payments, in the lowest denomination for the currency (e.g. pence in GBP, cents in
EUR). If the requested payment amounts do not sum up correctly, a validation error
will be returned.
	app_fee
	The amount to be deducted from each payment as an app fee, to be paid to the partner integration which created the subscription, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payment_reference
	An optional reference that will appear on your customer’s bank statement. The character limit for this reference is dependent on the scheme.
 ACH - 10 characters
 Autogiro - 11 characters
 Bacs - 10 characters
 BECS - 30 characters
 BECS NZ - 12 characters
 Betalingsservice - 30 characters
 Faster Payments - 18 characters
 PAD - scheme doesn’t offer references
 PayTo - 18 characters
 SEPA - 140 characters
 Note that this reference must be unique (for each merchant) for the BECS scheme as it is a scheme requirement. Restricted: You can only specify a payment reference for Bacs payments (that is, when collecting from the UK) if you’re on the GoCardless Plus, Pro or Enterprise packages. Restricted: You can not specify a payment reference for Faster Payments.

	retry_if_possible
	On failure, automatically retry payments using intelligent retries. Default is false. Important: To be able to use intelligent retries, Success+ needs to be enabled in GoCardless dashboard.

	links[mandate]
	
required ID of the associated mandate which the instalment schedule will create payments against.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/instalment_schedules HTTP/1.1
Content-Type: application/json

{
 "instalment_schedules": {
 "name": "Bike Invoice 271",
 "currency": "GBP",
 "total_amount": "2500",
 "instalments": [
 {
 "amount": "1500",
 "charge_date": "2019-12-14"
 },
 {
 "amount": "1000",
 "charge_date": "2020-05-01"
 }
],
 "metadata": {},
 "links": {
 "mandate": "MD123"
 }
 }
}

HTTP/1.1 201 (Created)
Location: /instalment_schedules/IS123
Content-Type: application/json
{
 "instalment_schedules": {
 "id": "IS123",
 "status": "pending",
 "total_amount": "2500",
 "metadata": {},
 "payment_errors": {},
 "links": {
 "mandate": "MD123",
 "customer": "CU123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$instalment_schedule = $client->instalmentSchedules()->createWithDates([
 "params" => [
 "name" => "ACME Invoice 103",
 "total_amount" => 10000, // 100 GBP in pence, collected from the customer
 "app_fee" => 10, // Your 10 pence fee, applied to each instalment,
 // to be paid out to you
 "currency" => 'GBP',
 "instalments" => [
 [
 "charge_date" => '2019-08-20',
 "amount" => 3400
],
 [
 "charge_date" => '2019-09-03',
 "amount" => 3400
],
 [
 "charge_date" => '2019-09-17',
 "amount" => 3200
],
],
 "links" => [
 "mandate" => 'MD0000XH9A3T4C'
],
 "metadata" => []
],
 "headers" => [
 'Idempotency-Key' => 'random_instalment_schedule_specific_string'
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

instalment_schedule = client.instalment_schedules.create_with_dates(
 params={
 "name": "ACME Invoice 103",
 "total_amount": 10000, # 100 GBP in pence, collected from the customer
 "app_fee": 10, # Your 10 pence fee, applied to each instalment,
 # to be paid out to you
 "currency": 'GBP',
 "instalments": [
 {
 "charge_date": '2019-08-20',
 "amount": 3400
 },
 {
 "charge_date": '2019-09-03',
 "amount": 3400
 },
 {
 "charge_date": '2019-09-17',
 "amount": 3200
 },
],
 "links": {
 "mandate": 'MD0000XH9A3T4C'
 },
 "metadata": {}
 }, headers={
 'Idempotency-Key': 'random_instalment_schedule_specific_string'
 }
)

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

instalment_schedule = @client.instalment_schedules.create_with_dates(
 params: {
 name: "ACME Invoice 103",
 total_amount: 10_000, # 100 GBP in pence, collected from the customer
 app_fee: 10, # Your 10 pence fee, applied to each instalment,
 # to be paid out to you
 currency: 'GBP',
 instalments: [
 {
 charge_date: '2019-08-20',
 amount: 3_400
 },
 {
 charge_date: '2019-09-03',
 amount: 3_400
 },
 {
 charge_date: '2019-09-17',
 amount: 3_200
 },
],
 links: {
 mandate: 'MD0000XH9A3T4C'
 },
 metadata: {}
 },
 headers: {
 'Idempotency-Key': 'random_instalment_schedule_specific_string'
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

int[] amountsArray = {3400, 3400, 3200};
String[] datesArray = {"2019-08-20", "2019-09-03", "2019-09-17"};

InstalmentSchedule instalmentSchedule = client.instalmentSchedules().createWithDates()
 .withTotalAmount(10000) // 100 GBP in Pence, collected from the end customer.
 .withAppFee(10) // Your 10 pence fee, applied to each instalment, to be
 // paid out to you
 .withCurrency("GBP")
 .withAmounts(amountsArray)
 .withDates(datesArray)
 .withLinksMandate("MD0000YTKZKY4J")
 .withMetadata("invoiceId", "001")
 .withIdempotencyKey("random_instalment_schedule_specific_string")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const instalmentSchedule = await client.instalmentSchedules.createWithDates(
 {
 name: "ACME Invoice 103",
 total_amount: 10000, // 100 GBP in pence, collected from the customer
 app_fee: 10, // Your 10 pence fee, applied to each instalment,
 // to be paid out to you
 currency: 'GBP',
 instalments: [
 {
 charge_date: '2019-08-20',
 amount: 3400
 },
 {
 charge_date: '2019-09-03',
 amount: 3400
 },
 {
 charge_date: '2019-09-17',
 amount: 3200
 }
],
 links: {
 mandate: 'MD0000XH9A3T4C'
 },
 metadata: {}
 },
 "instalment_schedule_idempotency_key"
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var createResponse = await gocardless.InstalmentSchedules.CreateWithDatesAsync(
 new InstalmentScheduleCreateWithDatesRequest
 {
 TotalAmount = 10000, // 100 GBP in pence, collected from the customer
 AppFee = 10, // Your 10 pence fee, applied to each instalment,
 // to be paid out to you
 Currency = GoCardless.Services.InstalmentScheduleCreateWithDatesRequest.InstalmentScheduleCurrency.GBP,
 Name = "ACME Invoice 103",
 Instalments = new InstalmentScheduleInstalments[]
 {
 new InstalmentScheduleInstalments
 {
 ChargeDate = "2019-08-20",
 Amount = 3400,
 },
 new InstalmentScheduleInstalments
 {
 ChargeDate = "2019-09-03",
 Amount = 3400
 },
 new InstalmentScheduleInstalments
 {
 ChargeDate = "2019-09-17",
 Amount = 3200
 },
 },
 Links = new GoCardless
 .Services
 .InstalmentScheduleCreateWithDatesRequest
 .InstalmentScheduleLinks
 {
 Mandate = "MD0000XH9A3T4C"
 },
 Metadata = new Dictionary<string, string>
 {
 {"Invoice ID", "001"}
 },
 IdempotencyKey = "random_instalment_schedule_specific_string"
 }
);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 instalmentScheduleCreateWithDatesParams := gocardless.InstalmentScheduleCreateWithDatesParams{
 TotalAmount: 10000,
 AppFee: 10,
 Currency: "GBP",
 Instalments: []gocardless.InstalmentScheduleCreateWithDatesParamsInstalments{
 {
 Amount: 3400,
 ChargeDate: "2019-08-20",
 },
 {
 Amount: 3400,
 ChargeDate: "2019-09-03",
 },
 {
 Amount: 3400,
 ChargeDate: "2019-09-17",
 },
 },
 Links: gocardless.InstalmentScheduleCreateWithDatesParamsLinks{
 Mandate: "MD123",
 },
 Metadata: map[string]interface{}{"invoiceId": "001"},
 }

 requestOption := gocardless.WithIdempotencyKey("random_instalment_schedule_specific_string")
 instalmentSchedule, err := client.InstalmentSchedules().CreateWithDates(context, instalmentScheduleCreateWithDatesParams, requestOption)

}

 Create (with schedule)

Creates a new instalment schedule object, along with the associated payments. This
API is recommended if you wish to use the GoCardless scheduling logic. For finer
control over the individual dates, please check out the alternative
version.

It can take quite a while to create the associated payments, so the API will return
the status as pending initially. When processing has completed, a subsequent
GET request for the instalment schedule will either have the status success and link to
the created payments, or the status error and detailed information about the
failures.

Relative endpoint: POST /instalment_schedules

Parameters

	currency
	
required ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	instalments[amounts]
	
required List of amounts of each instalment, in the lowest denomination for the
currency (e.g. pence in GBP, cents in EUR).
	instalments[interval]
	
required Number of interval_units between charge dates. Must be greater than or
equal to 1.
	instalments[interval_unit]
	
required The unit of time between customer charge dates. One of weekly, monthly or yearly.
	instalments[start_date]
	The date on which the first payment should be charged. Must be on or after the mandate’s next_possible_charge_date. When left blank and month or day_of_month are provided, this will be set to the date of the first payment. If created without month or day_of_month this will be set as the mandate’s next_possible_charge_date

	name
	
required Name of the instalment schedule, up to 100 chars. This name will also be
copied to the payments of the instalment schedule if you use schedule-based creation.
	total_amount
	
required The total amount of the instalment schedule, defined as the sum of all individual
payments, in the lowest denomination for the currency (e.g. pence in GBP, cents in
EUR). If the requested payment amounts do not sum up correctly, a validation error
will be returned.
	app_fee
	The amount to be deducted from each payment as an app fee, to be paid to the partner integration which created the subscription, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payment_reference
	An optional reference that will appear on your customer’s bank statement. The character limit for this reference is dependent on the scheme.
 ACH - 10 characters
 Autogiro - 11 characters
 Bacs - 10 characters
 BECS - 30 characters
 BECS NZ - 12 characters
 Betalingsservice - 30 characters
 Faster Payments - 18 characters
 PAD - scheme doesn’t offer references
 PayTo - 18 characters
 SEPA - 140 characters
 Note that this reference must be unique (for each merchant) for the BECS scheme as it is a scheme requirement. Restricted: You can only specify a payment reference for Bacs payments (that is, when collecting from the UK) if you’re on the GoCardless Plus, Pro or Enterprise packages. Restricted: You can not specify a payment reference for Faster Payments.

	retry_if_possible
	On failure, automatically retry payments using intelligent retries. Default is false. Important: To be able to use intelligent retries, Success+ needs to be enabled in GoCardless dashboard.

	links[mandate]
	
required ID of the associated mandate which the instalment schedule will create payments against.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/instalment_schedules HTTP/1.1
Content-Type: application/json
{
 "instalment_schedules": {
 "name": "Bike Invoice 271",
 "currency": "GBP",
 "total_amount": "2500",
 "instalments": {
 "start_date": "2019-12-14",
 "interval_unit": "monthly",
 "interval": 1,
 "amounts": [
 "1500",
 "1000"
]
 },
 "metadata": {},
 "links": {
 "mandate": "MD123"
 }
 }
}

HTTP/1.1 201 Created
Location: /instalment_schedules/IS123
Content-Type: application/json
{
 "instalment_schedules": {
 "id": "IS123",
 "status": "pending",
 "total_amount": "2500",
 "metadata": {},
 "payment_errors": {},
 "links": {
 "mandate": "MD123",
 "customer": "CU123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$instalment_schedule = $client->instalmentSchedules()->createWithSchedule([
 "params" => [
 "name" => "ACME Invoice 103",
 "total_amount" => 10000, // 100 GBP in pence, collected from the customer
 "app_fee" => 10, // Your 10 pence fee, applied to each instalment,
 // to be paid out to you
 "currency" => "GBP",
 "instalments" => [
 "start_date" => "2019-08-20",
 "interval_unit" => "weekly",
 "interval" => 2,
 "amounts" => [
 3400,
 3400,
 3200
]
],
 "links" => [
 "mandate" => "MD0000XH9A3T4C"
],
 "metadata" => []
],
 "headers" => [
 "Idempotency-Key" => "random_instalment_schedule_specific_string"
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

instalment_schedule = client.instalment_schedules.create_with_schedule(
 params={
 "name": "ACME Invoice 103",
 "total_amount": 10000, # 100 GBP in pence, collected from the customer
 "app_fee": 10, # Your 10 pence fee, applied to each instalment,
 # to be paid out to you
 "currency": "GBP",
 "instalments": {
 "start_date": "2019-08-20",
 "interval_unit": "weekly",
 "interval": 2,
 "amounts": [
 3400,
 3400,
 3200
]
 }
 "links": {
 "mandate": "MD0000XH9A3T4C"
 },
 "metadata": {}
 }, headers={
 "Idempotency-Key": "random_instalment_schedule_specific_string"
 }
)

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

instalment_schedule = @client.instalment_schedules.create_with_schedule(
 params: {
 name: 'ACME Invoice 103',
 total_amount: 10_000, # 100 GBP in pence, collected from the customer
 app_fee: 10, # Your 10 pence fee, applied to each instalment,
 # to be paid out to you
 currency: 'GBP',
 instalments: {
 start_date: '2019-08-20',
 interval_unit: 'weekly',
 interval: 2,
 amounts: [
 3_400,
 3_400,
 3_200
]
 }
 links: {
 mandate: 'MD0000XH9A3T4C'
 },
 metadata: {}
 },
 headers: {
 'Idempotency-Key': 'random_instalment_schedule_specific_string'
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

int[] amountsArray = {3400, 3400, 3200};
InstalmentSchedule instalmentSchedule = client.instalmentSchedules().createWithSchedule()
 .withTotalAmount(10000) // 100 GBP in Pence, collected from the customer.
 .withAppFee(10) // Your 10 pence fee, applied to each instalment, to be
 // paid out to you
 .withCurrency("GBP")
 .withIntervalUnit(IntervalUnit.WEEKLY)
 .withInterval(2)
 .withAmounts(amountsArray)
 .withLinksMandate("MD0000YTKZKY4J")
 .withMetadata("invoiceId", "001")
 .withIdempotencyKey("random_instalment_schedule_specific_string")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const instalmentSchedule = await client.instalmentSchedules.createWithSchedule(
 {
 name: "ACME Invoice 103",
 total_amount: 10000, // 100 GBP in pence, collected from the customer
 app_fee: 10, // Your 10 pence fee, applied to each instalment,
 // to be paid out to you
 currency: "GBP",
 instalments: {
 start_date: "2019-08-20",
 interval_unit: "weekly",
 interval: 2,
 amounts: [
 3400,
 3400,
 3200
]
 }
 links: {
 mandate: "MD0000XH9A3T4C"
 },
 metadata: {}
 },
 "instalment_schedule_idempotency_key"
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

int?[] amountsArray = new int?[]{ 3400, 3400, 3200 };
var createResponse = await gocardless.InstalmentSchedules.CreateWithScheduleAsync(
 new InstalmentScheduleCreateWithScheduleRequest
 {
 TotalAmount = 10000, // 100 GBP in pence, collected from the customer
 AppFee = 10, // Your 10 pence fee, applied to each instalment,
 // to be paid out to you
 Currency = GoCardless.Services.InstalmentScheduleCreateWithScheduleRequest.InstalmentScheduleCurrency.GBP,
 Name = "ACME Invoice 103",
 Instalments = new GoCardless
 .Services
 .InstalmentScheduleCreateWithScheduleRequest
 .InstalmentScheduleInstalments
 {
 StartDate = "2019-08-20",
 IntervalUnit = InstalmentScheduleCreateWithScheduleRequest.InstalmentScheduleInstalments.InstalmentScheduleIntervalUnit.Weekly,
 Interval = 2,
 Amounts = amountsArray
 },
 Metadata = new Dictionary<string, string>
 {
 {"Invoice ID", "001"}
 },
 Links = new GoCardless
 .Services
 .InstalmentScheduleCreateWithScheduleRequest
 .InstalmentScheduleLinks
 {
 Mandate = "MD0000XH9A3T4C"
 },
 IdempotencyKey = "random_instalment_schedule_specific_string"
 }
);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 instalmentScheduleCreateWithScheduleParams := gocardless.InstalmentScheduleCreateWithScheduleParams{
 TotalAmount: 10000,
 AppFee: 10,
 Currency: "GBP",
 Instalments: gocardless.InstalmentScheduleCreateWithScheduleParamsInstalments{
 Interval: 2,
 IntervalUnit: "monthly",
 Amounts: []int{3400, 3400, 3200},
 },
 Metadata: map[string]interface{}{"invoiceId": "001"},
 }

 requestOption := gocardless.WithIdempotencyKey("random_instalment_schedule_specific_string")
 instalmentSchedule, err := client.InstalmentSchedules().CreateWithSchedule(context, instalmentScheduleCreateWithScheduleParams, requestOption)

}

 List instalment schedules

Returns a cursor-paginated list of your instalment schedules.

Relative endpoint: GET /instalment_schedules

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	customer
	ID of the associated customer.
	limit
	Number of records to return.
	mandate
	ID of the associated mandate which the instalment schedule will create payments against.
	status
	At most five valid status values

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/instalment_schedules?after=IS123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": "IS000",
 "after": "IS456",
 },
 "limit": 50
 },
 "instalment_schedules": [{
 "id": "IS123",
 "name": "Bike Invoice 271",
 "currency": "GBP",
 "status": "active",
 "total_amount": "2500",
 "metadata": {},
 "payment_errors": {},
 "links": {
 "mandate": "MD123",
 "payments": ["PM123", "PM345"],
 "customer": "CU123"
 }
 }, {
 "id": "IS456",
 "name": "INV-7465",
 "currency": "GBP",
 "status": "cancelled",
 "total_amount": "3600",
 "metadata": {},
 "payment_errors": {},
 "links": {
 "mandate": "MD456",
 "payments": ["PM567", "PM789"],
 "customer": "CU456"
 }
 }]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->instalmentSchedules()->list();

$client->instalmentSchedules()->list([
 "params" => ["created_at[gt]" => "2015-11-03T09:30:00Z"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.instalment_schedules.list().records

client.instalment_schedules.list(params={"after": "IS123"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.instalment_schedules.list

@client.instalment_schedules.list(
 params: {
 "created_at[gt]" => "2016-08-06T09:30:00Z"
 }
)

@client.instalment_schedules.list.records.each do |instalment_schedule|
 puts instalment_schedule.inspect
end

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (InstalmentSchedule instalmentSchedule : client.instalmentSchedules().all().execute()) {
 System.out.println(instalmentSchedule.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const instalmentSchedules = await client.instalmentSchedules.list();

// List all instalment schedules associated with a given customer.
const instalmentSchedules = await client.instalmentSchedules.list({ customer: "CU123" });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var instalmentScheduleListResponse = gocardless.InstalmentSchedules.All();
foreach (GoCardless.Resources.InstalmentSchedule instalmentSchedule in instalmentScheduleListResponse)
{
 Console.WriteLine(instalmentSchedule.Name);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 instalmentScheduleListParams := gocardless.InstalmentScheduleListParams{}
 instalmentScheduleListResult, err := client.InstalmentSchedules.List(context, instalmentScheduleListParams)
 for _, instalmentSchedule := range instalmentScheduleListResult.InstalmentSchedules {
 fmt.Println(instalmentSchedule.Name)
 }

}

 Get a single instalment schedule

Retrieves the details of an existing instalment schedule.

Relative endpoint: GET /instalment_schedules/IS123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/instalment_schedules/IS123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "instalment_schedules": {
 "id": "IS123",
 "name": "INV-4142",
 "currency": "GBP",
 "status": "active",
 "total_amount": "2500",
 "metadata": {},
 "payment_errors": {},
 "links": {
 "mandate": "MD456",
 "payments": ["PM123", "PM345"],
 "customer": "CU456"
 }
 }
}

{
 "instalment_schedules": {
 "id": "IS123",
 "name": "INV-4142",
 "currency": "GBP",
 "status": "creation_failed",
 "total_amount": "2500",
 "metadata": {},
 "payment_errors": {
 "0": { "field": "description", "message": "was too long" },
 "1": {}
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->instalmentSchedules()->get("IS123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.instalment_schedules.get("IS123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.instalment_schedules.get("IS123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

InstalmentSchedule instalmentSchedule = client.instalmentSchedules().get("IS123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const instalmentSchedule = await client.instalmentSchedules.find("IS123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var instalmentScheduleResponse = await gocardless.InstalmentSchedules.GetAsync("IS123");
GoCardless.Resources.Customer instalmentSchedule = instalmentScheduleResponse.InstalmentSchedule;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 instalmentSchedule, err := client.InstalmentSchedules.Get(context, "IS123")

}

 Update an instalment schedule

Updates an instalment schedule. This accepts only the metadata parameter.

Relative endpoint: PUT /instalment_schedules/IS123

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/instalment_schedules/IS123 HTTP/1.1
Content-Type: application/json
{
 "instalment_schedules": {
 "metadata": {
 "key": "value"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "instalment_schedules": {
 "id": "IS123",
 "name": "INV-4142",
 "currency": "GBP",
 "status": "active",
 "total_amount": "2500",
 "metadata": {
 "key": "value"
 },
 "payment_errors": {},
 "links": {
 "mandate": "MD456",
 "payments": ["PM123", "PM345"],
 "customer": "CU456"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->instalmentSchedules()->update("IS123", [
 "params" => ["metadata" => ["key" => "value"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.instalment_schedules.update("IS123", params={
 "metadata": {"key": "value"}
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.instalment_schedules.update(
 "IS123",
 params: {
 metadata: { key: "value" }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.instalmentSchedules().update("IS123")
 .withMetadata("key", "value")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const instalmentSchedule = await client.instalmentSchedules.update(
 "IS123",
 {
 metadata: {
 key: "value"
 }
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var instalmentScheduleRequest = new GoCardless.Services.InstalmentScheduleUpdateRequest()
{
 Metadata = new Dictionary<string, string>()
 {
 {"key", "value"}
 }
};

var instalmentScheduleResponse = await gocardless.InstalmentSchedules.UpdateAsync("IS123", instalmentScheduleRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 instalmentScheduleUpdateParams := gocardless.InstalmentScheduleUpdateParams{
 Metadata: map[string]interface{"key": "value"}
 }

 instalmentSchedule, err := client.InstalmentSchedules.Update(context, "IS123", instalmentScheduleUpdateParams)

}

 Cancel an instalment schedule

Immediately cancels an instalment schedule; no further payments will be collected for it.

This will fail with a cancellation_failed error if the instalment schedule is already cancelled or has completed.

Relative endpoint: POST /instalment_schedules/IS123/actions/cancel

Parameters

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/instalment_schedules/IS123/actions/cancel HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "instalment_schedules": {
 "id": "IS123",
 "name": "Bike Invoice 271",
 "currency": "GBP",
 "status": "cancelled",
 "total_amount": "2500",
 "metadata": {},
 "payment_errors": {},
 "links": {
 "mandate": "MD123",
 "payments": ["PM123", "PM345"],
 "customer": "CU123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->instalmentSchedules()->cancel("IS123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.instalment_schedules.cancel("IS123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.instalment_schedules.cancel("IS123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.instalmentSchedules().cancel("IS123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const instalmentScheduleResponse = await client.instalmentSchedules.cancel("IS123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var response = await gocardless.InstalmentSchedules.CancelAsync("IS123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 instalmentScheduleCancelParams = make(map[string]interface)
 instalmentSchedule, err := client.InstalmentSchedules.Cancel(context, "IS123", instalmentScheduleCancelParams)

}

 Mandates

Mandates represent the Direct Debit mandate with a customer.

GoCardless will notify you via a webhook whenever the status of a mandate changes.

Properties

	id
	Unique identifier, beginning with “MD”. Note that this prefix may not apply to mandates created before 2016.
	authorisation_source
	This field is ACH specific, sometimes referred to as SEC code.

 This is the way that the payer gives authorisation to the merchant.
 web: Authorisation is Internet Initiated or via Mobile Entry (maps to SEC code: WEB)
 telephone: Authorisation is provided orally over telephone (maps to SEC code: TEL)
 paper: Authorisation is provided in writing and signed, or similarly authenticated (maps to SEC code: PPD)

	consent_parameters[end_date]
	The latest date at which payments can be taken, must occur after start_date if present
	consent_parameters[max_amount_per_payment]
	The maximum amount that can be charged for a single payment
	periods
	Frequency configuration

 Each instance will contain these properties:

 	
 max_amount_per_period: The maximum total amount that can be charged for all payments in this period

	
 max_payments_per_period: The maximum number of payments that can be collected in this period

	
 period: The repeating period for this mandate

	consent_parameters[start_date]
	The date from which payments can be taken
	created_at
	Fixed timestamp, recording when this resource was created.
	funds_settlement
	This field will decide how GoCardless handles settlement of funds from the customer.

 	
managed will be moved through GoCardless’ account, batched, and payed out.
	
direct will be a direct transfer from the payer’s account to the merchant where
invoicing will be handled separately.

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	next_possible_charge_date
	The earliest date that can be used as a charge_date on any newly created payment for this mandate. This value will change over time.
	next_possible_standard_ach_charge_date
	If this is an an ACH mandate, the earliest date that can be used as a
charge_date on any newly created payment to be charged through standard
ACH, rather than Faster ACH. This value will change over time.

 It is only present in the API response for ACH mandates.

	payments_require_approval
	Boolean value showing whether payments and subscriptions under this mandate require approval via an automated email before being processed.
	reference
	Unique reference. Different schemes have different length and character set requirements. GoCardless will generate a unique reference satisfying the different scheme requirements if this field is left blank.
	scheme
	
Bank payment scheme to which this mandate and associated payments are submitted. Can be supplied or automatically detected from the customer’s bank account.
	status
	One of:

 	
 pending_customer_approval: the mandate has not yet been signed by the second customer

	
 pending_submission: the mandate has not yet been submitted to the customer’s bank

	
 submitted: the mandate has been submitted to the customer’s bank but has not been processed yet

	
 active: the mandate has been successfully set up by the customer’s bank

	
 suspended_by_payer: the mandate has been suspended by payer

	
 failed: the mandate could not be created

	
 cancelled: the mandate has been cancelled

	
 expired: the mandate has expired due to dormancy

	
 consumed: the mandate has been consumed and cannot be reused (note that this only applies to schemes that are per-payment authorised)

	
 blocked: the mandate has been blocked and payments cannot be created

	verified_at
	
Timestamp recording when this mandate was verified.
	links[creditor]
	ID of the associated creditor.
	links[customer]
	ID of the associated customer

	links[customer_bank_account]
	ID of the associated customer bank account which the mandate is created and submits payments against.
	links[new_mandate]
	ID of the new mandate if this mandate has been replaced.

 Create a mandate

Creates a new mandate object.

Relative endpoint: POST /mandates

Note: this endpoint is a legacy API endpoint and does not support GoCardless’ newest features. We recommend using the Billing Requests API instead.

Restricted: this endpoint is restricted to GoCardless Pro and GoCardless Enterprise accounts with approved payment pages.

Warning: by default, the ability to provide a custom mandate reference is switched off. The banking system rules for valid references are quite complex, and we recommend allowing GoCardless to generate it. If you would like to provide custom references, please contact support.

Parameters

	authorisation_source
	This field is ACH specific, sometimes referred to as SEC code.

 This is the way that the payer gives authorisation to the merchant.
 web: Authorisation is Internet Initiated or via Mobile Entry (maps to SEC code: WEB)
 telephone: Authorisation is provided orally over telephone (maps to SEC code: TEL)
 paper: Authorisation is provided in writing and signed, or similarly authenticated (maps to SEC code: PPD)

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	payer_ip_address
	For ACH customers only. Required for ACH customers. A string containing the IP address of the payer to whom the mandate belongs (i.e. as a result of their completion of a mandate setup flow in their browser).

 Not required for creating offline mandates where authorisation_source is set to telephone or paper.

	reference
	Unique reference. Different schemes have different length and character set requirements. GoCardless will generate a unique reference satisfying the different scheme requirements if this field is left blank.
	scheme
	
Bank payment scheme to which this mandate and associated payments are submitted. Can be supplied or automatically detected from the customer’s bank account.
	links[creditor]
	ID of the associated creditor. Only required if your account manages multiple creditors.
	links[customer_bank_account]
	
required ID of the associated customer bank account which the mandate is created and submits payments against.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/mandates HTTP/1.1
Content-Type: application/json
{
 "mandates": {
 "scheme": "bacs",
 "metadata": {
 "contract": "ABCD1234"
 },
 "links": {
 "customer_bank_account": "BA123",
 "creditor": "CR123"
 }
 }
}

HTTP/1.1 201 Created
Location: /mandates/MD123
Content-Type: application/json
{
 "mandates": {
 "id": "MD123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "reference": "REF-123",
 "status": "pending_submission",
 "scheme": "bacs",
 "next_possible_charge_date": "2014-11-10",
 "metadata": {
 "contract": "ABCD1234"
 },
 "links": {
 "customer_bank_account": "BA123",
 "creditor": "CR123",
 "customer": "CU123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandates()->create([
 "params" => ["scheme" => "bacs",
 "metadata" => ["contract" => "ABCD1234"],
 "links" => ["customer_bank_account" => "BA123"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandates.create(params={
 "scheme": "bacs",
 "metadata": {
 "contract": "ABCD1234"
 },
 "links": {
 "customer_bank_account": "BA123",
 "creditor": "CR123"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandates.create(
 params: {
 scheme: "bacs",
 links: {
 customer_bank_account: "BA123"
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Mandate mandate = client.mandates().create()
 .withScheme("bacs")
 .withLinksCustomerBankAccount("BA123")
 .withMetadata("contract", "ABCD1234")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandate = await client.mandates.create({
 scheme: "bacs",
 metadata: {
 contract: "ABCD1234"
 },
 links: {
 customer_bank_account: "BA123",
 creditor: "CR123"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var mandateRequest = new GoCardless.Services.MandateCreateRequest()
{
 Links = new GoCardless.Services.MandateCreateRequest.MandateLinks()
 {
 CustomerBankAccount = "BA0123"
 },
 Metadata = new Dictionary<string, string>()
 {
 {"internal_reference", "ref_09011991"}
 },
 Scheme = "bacs"
};

var mandateResponse = await gocardless.Mandates.CreateAsync(mandateRequest);
GoCardless.Resources.Mandate mandate = mandateResponse.Mandate;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateCreateParams := gocardless.MandateCreateParams{
 Scheme: "bacs",
 Links: gocardless.MandateCreateParamsLinks{
 CustomerBankAccount: "BA123",
 Creditor: "CR123",
 },
 Metadata: map[string]interface{}{"contract": "ABCD1234"},
 }

 mandate, err := client.Mandates().Create(context, mandateCreateParams)

}

 List mandates

Returns a cursor-paginated list of your mandates.

Relative endpoint: GET /mandates

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	creditor
	ID of a creditor. If specified, this endpoint will return all mandates for the given creditor. Cannot be used in conjunction with customer or customer_bank_account

	customer
	ID of a customer. If specified, this endpoint will return all mandates for the given customer. Cannot be used in conjunction with customer_bank_account or creditor

	customer_bank_account
	ID of a customer bank account. If specified, this endpoint will return all mandates for the given bank account. Cannot be used in conjunction with customer or creditor

	limit
	Number of records to return.
	mandate_type
	Mandate type
	reference
	Unique reference. Different schemes have different length and character set requirements. GoCardless will generate a unique reference satisfying the different scheme requirements if this field is left blank.
	scheme
	Scheme you’d like to retrieve mandates for
	status
	At most four valid status values

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/mandates HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 },
 "mandates": [{
 "id": "MD123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "reference": "REF-123",
 "status": "pending_submission",
 "scheme": "bacs",
 "mandate_type": "bank_debit",
 "next_possible_charge_date": "2014-11-10",
 "metadata": {
 "contract": "ABCD1234"
 },
 "links": {
 "customer_bank_account": "BA123",
 "creditor": "CR123",
 "customer": "CU123"
 }
 }]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandates()->list();

$client->mandates()->list([
 "params" => ["customer" => "CU123"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandates.list().records

client.mandates.list(params={"customer": "CU123"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandates.list

@client.mandates.list(params: { customer: "CU123" })

@client.mandates.list.records.each { |mandate| puts mandate.inspect }

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (Mandate mandate : client.mandates().all().withCustomer("CU123").execute()) {
 System.out.println(mandate.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandates = await client.mandates.list();

// List all mandates associated with a given customer.
const mandates = await client.mandates.list({ customer: "CU123" });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var mandateRequest = new GoCardless.Services.MandateListRequest()
{
 Customer = "CU000123"
};

var mandateListResponse = gocardless.Mandates.All(mandateRequest);
foreach (GoCardless.Resources.Mandate mandate in mandateListResponse)
{
 Console.WriteLine(mandate.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateListParams := gocardless.MandateListParams{
 Customer: "CU123",
 }

 mandateListResult, err := client.Mandates.List(context, mandateListParams)
 for _, mandate := mandateListResult.Mandates {
 fmt.Println(mandate.Id)
 }

}

 Get a single mandate

Retrieves the details of an existing mandate.

Relative endpoint: GET /mandates/MD123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/mandates/MD123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandates": {
 "id": "MD123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "reference": "REF-123",
 "status": "pending_submission",
 "scheme": "bacs",
 "mandate_type": "bank_debit",
 "next_possible_charge_date": "2014-11-10",
 "metadata": {
 "contract": "ABCD1234"
 },
 "links": {
 "customer_bank_account": "BA123",
 "creditor": "CR123",
 "customer": "CU123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandates()->get("MD123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandates.get("MD123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandates.get("MD123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Mandate mandate = client.mandates().get("MD123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandate = await client.mandates.find("MD123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var mandateResponse = await gocardless.Mandates.GetAsync("MD0123");
GoCardless.Resources.Mandate mandate = mandateResponse.Mandate;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandate, err := client.Mandates.Get(context, "MD123")

}

 Update a mandate

Updates a mandate object. This accepts only the metadata parameter.

Relative endpoint: PUT /mandates/MD123

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/mandates/MD123 HTTP/1.1
Content-Type: application/json
{
 "mandates": {
 "metadata": {
 "key": "value"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandates": {
 "id": "MD123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "reference": "REF-123",
 "status": "pending_submission",
 "scheme": "bacs",
 "next_possible_charge_date": "2014-11-10",
 "metadata": {
 "key": "value"
 },
 "links": {
 "customer_bank_account": "BA123",
 "creditor": "CR123",
 "customer": "CU123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandates()->update("MD123", [
 "params" => ["metadata" => ["key" => "value"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandates.update("MD123", params={
 "metadata": {"key": "value"}
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandates.update(
 "MD123",
 params: {
 metadata: { contract_id: "ref_09011991" }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.mandates().update("MD123").withMetadata("contract_id", "ref_09011991").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandate = await client.mandates.update(
 "MD123",
 {
 metadata: {"key": "value"}
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var mandateRequest = new GoCardless.Services.MandateUpdateRequest()
{
 Metadata = new Dictionary<string, string>()
 {
 {"internal_reference", "ref_09011991"}
 }
};

var mandateResponse = await gocardless.Mandates.UpdateAsync("MD0123", mandateRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateUpdateParams := gocardless.MandateUpdateParams{
 Metadata: map[string]interface{}{"key": "value"},
 }

 mandate, err := client.Mandates.Update(context, "MD123", mandateUpdateParams)

}

 Cancel a mandate

Immediately cancels a mandate and all associated cancellable payments. Any metadata supplied to this endpoint will be stored on the mandate cancellation event it causes.

This will fail with a cancellation_failed error if the mandate is already cancelled.

Relative endpoint: POST /mandates/MD123/actions/cancel

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/mandates/MD123/actions/cancel HTTP/1.1
Content-Type: application/json
{
 "data": {
 "metadata": {}
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandates": {
 "id": "MD123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "reference": "REF-123",
 "status": "cancelled",
 "scheme": "bacs",
 "next_possible_charge_date": null,
 "metadata": {
 "contract": "ABCD1234"
 },
 "links": {
 "customer_bank_account": "BA123",
 "creditor": "CR123",
 "customer": "CU123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandates()->cancel("MD123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandates.cancel("MD123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandates.cancel("MD123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.mandates().cancel("MD123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandateResponse = await client.mandates.cancel("MD123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var mandateResponse = await gocardless.Mandates.CancelAsync("MD0123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateCancelParams := gocardless.MandateCancelParams{}
 mandate, err := client.Mandates.Cancel(context, "MD123", mandateCancelParams)

}

 Reinstate a mandate

Reinstates a cancelled or expired mandate to the banks. You will receive a resubmission_requested webhook, but after that reinstating the mandate follows the same process as its initial creation, so you will receive a submitted webhook, followed by a reinstated or failed webhook up to two working days later. Any metadata supplied to this endpoint will be stored on the resubmission_requested event it causes.

This will fail with a mandate_not_inactive error if the mandate is already being submitted, or is active.

Mandates can be resubmitted up to 10 times.

Relative endpoint: POST /mandates/MD123/actions/reinstate

Restricted: this endpoint is restricted to accounts
with approved payment pages. To instead use the GoCardless hosted payment pages,
see the redirect flows endpoint.

Warning: A mandate can only be reinstated if it has been cancelled through the
dashboard or the API. Any mandate that has been cancelled by the bank
cannot be reinstated.

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/mandates/MD123/actions/reinstate HTTP/1.1
Content-Type: application/json
{
 "data": {
 "metadata": {
 "ticket_id": "TK123"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandates": {
 "id": "MD123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "reference": "REF-123",
 "status": "submitted",
 "scheme": "bacs",
 "next_possible_charge_date": "2014-11-10",
 "metadata": {
 "contract": "ABCD1234"
 },
 "links": {
 "customer_bank_account": "BA123",
 "creditor": "CR123",
 "customer": "CU123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandates()->reinstate("MD123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandates.reinstate("MD123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandates.reinstate("MD123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.mandates().reinstate("MD123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandateResponse = await client.mandates.reinstate("MD123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var mandateResponse = await gocardless.Mandates.ReinstateAsync("MD0123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateReinstateParams := gocardless.MandateReinstateParams{}
 mandate, err := client.Mandates.Reinstate(context, "MD123", mandateReinstateParams)

}

 Mandate Imports

Mandate Imports allow you to migrate existing mandates from other providers into the
GoCardless platform.

The process is as follows:

	Create a mandate import
	
Add entries to the import
	
Submit the import
	Wait until a member of the GoCardless team approves the import, at which point the mandates will be created
	
Link up the mandates in your system

When you add entries to your mandate import, they are not turned into actual mandates
until the mandate import is submitted by you via the API, and then processed by a member
of the GoCardless team. When that happens, a mandate will be created for each entry in the import.

We will issue a mandate_created webhook for each entry, which will be the same as the webhooks
triggered when creating a mandate using the mandates API. Once these
webhooks start arriving, any reconciliation can now be accomplished by
checking the current status of the mandate import and
linking up the mandates to your system.

Note that all Mandate Imports have an upper limit of 30,000 entries, so we recommend you split your import into several smaller imports if you’re planning to exceed this threshold.

Restricted: This API is currently only available for approved integrators - please get in touch if you would like to use this API.

Properties

	id
	Unique identifier, beginning with “IM”.
	created_at
	Fixed timestamp, recording when this resource was created.
	scheme
	The scheme of the mandates to be imported.
All mandates in a single mandate
import must be for the same scheme.
	status
	The status of the mandate import.

 	
 created: A new mandate import.

	
 submitted: After the integrator has finished adding mandates and submitted the import.

	
 cancelled: If the integrator cancelled the mandate import.

	
 processing: Once a mandate import has been approved by a GoCardless team member it will be in this state while mandates are imported.

	
 processed: When all mandates have been imported successfully.

	links[creditor]
	ID of the associated creditor.

 Create a new mandate import

Mandate imports are first created, before mandates are added one-at-a-time, so
this endpoint merely signals the start of the import process. Once you’ve finished
adding entries to an import, you should
submit it.

Relative endpoint: POST /mandate_imports

Parameters

	scheme
	
required A bank payment scheme. Currently “ach”, “autogiro”, “bacs”, “becs”, “becs_nz”, “betalingsservice”, “faster_payments”, “pad”, “pay_to” and “sepa_core” are supported.
	links[creditor]
	ID of the associated creditor. Only required if your account manages multiple creditors.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/mandate_imports HTTP/1.1
Content-Type: application/json
{
 "mandate_imports": {
 "scheme": "bacs"
 }
}

HTTP/1.1 201 Created
Location: /mandate_imports/IM000010790WX1
Content-Type: application/json
{
 "mandate_imports": {
 "id": "IM000010790WX1",
 "scheme": "bacs",
 "status": "created",
 "created_at": "2018-03-12T14:03:04.000Z",
 "links": {
 "creditor": "CR123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandateImports()->create([
 "params" => ["scheme" => "bacs"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandate_imports.create(params={
 "scheme": "bacs"
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandate_imports.create(params: {
 scheme: "bacs"
})

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

MandateImport import = client.mandateImports().create()
 .withScheme(com.gocardless.services.MandateImportService.MandateImportCreateRequest.Scheme.BACS)
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandateImport = await client.mandateImports.create({
 scheme: "bacs"
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var importRequest = new GoCardless.Services.MandateImportCreateRequest()
{
 Scheme = MandateImportCreateRequest.MandateImportScheme.Bacs
};

var importResponse = await gocardless.MandateImports.CreateAsync(importRequest);
GoCardless.Resources.MandateImport import = importResponse.MandateImport;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateImportCreateParams := gocardless.MandateImportCreateParams{
 Scheme: "bacs",
 }

 mandateImport, err := client.MandateImports.Create(context, mandateImportCreateParams)

}

 Get a mandate import

Returns a single mandate import.

Relative endpoint: GET /mandate_imports/IM000010790WX1

Parameters

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/mandate_imports/IM000010790WX1 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandate_imports": {
 "id": "IM000010790WX1",
 "scheme": "bacs",
 "status": "created",
 "created_at": "2018-03-12T14:03:04.000Z",
 "links": {
 "creditor": "CR123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandateImports()->get("IM000010790WX1");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandate_imports.get("IM000010790WX1")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandate_imports.get("IM000010790WX1")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

MandateImport import = client.mandateImports().get("IM000010790WX1").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandateImport = await client.mandateImports.find("IM000010790WX1");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var response = await gocardless.MandateImports.GetAsync("IM000010790WX1");
GoCardless.Resources.MandateImport import = response.MandateImport;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateImport, err := client.MandateImports.Get("IM000010790WX1")

}

 Submit a mandate import

Submits the mandate import, which allows it to be processed by a member of the
GoCardless team. Once the import has been submitted, it can no longer have entries
added to it.

In our sandbox environment, to aid development, we automatically process mandate
imports approximately 10 seconds after they are submitted. This will allow you to
test both the “submitted” response and wait for the webhook to confirm the
processing has begun.

Relative endpoint: POST /mandate_imports/IM000010790WX1/actions/submit

Parameters

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/mandate_imports/IM000010790WX1/actions/submit HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandate_imports": {
 "id": "IM000010790WX1",
 "scheme": "bacs",
 "status": "submitted",
 "created_at": "2018-03-12T14:03:04.000Z",
 "links": {
 "creditor": "CR123"
 }
 }
}

POST https://api-sandbox.gocardless.com/mandate_imports/IM000010790WX1/actions/submit HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandate_imports": {
 "id": "IM000010790WX1",
 "scheme": "bacs",
 "status": "processing",
 "created_at": "2018-03-12T14:03:04.000Z",
 "links": {
 "creditor": "CR123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandateImports()->submit("IM000010790WX1");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandate_imports.submit("IM000010790WX1")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandate_imports.submit("IM000010790WX1")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.mandateImports().submit("IM000010790WX1").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandateImport = await client.mandateImports.submit("IM000010790WX1");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var response = await gocardless.MandateImports.SubmitAsync("IM000010790WX1");
GoCardless.Resources.MandateImport import = response.MandateImport;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateImportSubmitParams := map[string]interface{}
 mandateImport, err := client.MandateImports.Submit(context, "IM000010790WX1", mandateImportSubmitParams)

}

 Cancel a mandate import

Cancels the mandate import, which aborts the import process and stops the mandates
being set up in GoCardless. Once the import has been cancelled, it can no longer have
entries added to it. Mandate imports which have already been submitted or processed
cannot be cancelled.

Relative endpoint: POST /mandate_imports/IM000010790WX1/actions/cancel

Parameters

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/mandate_imports/IM000010790WX1/actions/cancel HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandate_imports": {
 "id": "IM000010790WX1",
 "scheme": "bacs",
 "status": "cancelled",
 "created_at": "2018-03-12T14:03:04.000Z",
 "links": {
 "creditor": "CR123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandateImports()->cancel("IM000010790WX1");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandate_imports.cancel("IM000010790WX1")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandate_imports.cancel("IM000010790WX1")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.mandateImports().cancel("IM000010790WX1").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandateImportResponse = await client.mandateImports.cancel("IM000010790WX1");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var response = await gocardless.MandateImports.CancelAsync("IM000010790WX1");
GoCardless.Resources.MandateImport import = response.MandateImport;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateImportCancelParams := make(map[string]interface)
 mandateImport, err := client.MandateImports.Cancel(context, "IM000010790WX1", mandateImportCancelParams)

}

 Mandate Import Entries

Mandate Import Entries are added to a Mandate Import.
Each entry corresponds to one mandate to be imported into GoCardless.

To import a mandate you will need:

	Identifying information about the customer (name/company and address)
	Bank account details, consisting of an account holder name and
 either an IBAN or local bank details

	Amendment details (SEPA only)

We suggest you provide a record_identifier (which is unique within the context of a
single mandate import) to help you to identify mandates that have been created once the
import has been processed by GoCardless. You can
list the mandate import entries,
match them up in your system using the record_identifier, and look at the links
fields to find the mandate, customer and customer bank account that have been imported.

Restricted: This API is currently only available for approved integrators - please get in touch if you would like to use this API.

Properties

	created_at
	Fixed timestamp, recording when this resource was created.
	record_identifier
	A unique identifier for this entry, which you can use (once the import has been
processed by GoCardless) to identify the records that have been created. Limited
to 255 characters.
	links[customer]
	The ID of the customer which was created when the mandate import was processed.
	links[customer_bank_account]
	The ID of the customer bank account which was created when the mandate import
was processed.
	links[mandate]
	The ID of the mandate which was created when the mandate import was processed.
	links[mandate_import]
	The ID of the mandate import. This is returned when you
create a Mandate Import.

 Add a mandate import entry

For an existing mandate import, this endpoint can
be used to add individual mandates to be imported into GoCardless.

You can add no more than 30,000 rows to a single mandate import.
If you attempt to go over this limit, the API will return a record_limit_exceeded error.

Relative endpoint: POST /mandate_import_entries

Parameters

	bank_account[account_holder_name]
	
required Name of the account holder, as known by the bank. Usually this is the same as the name stored with the linked creditor. This field will be transliterated, upcased and truncated to 18 characters. This field is required unless the request includes a customer bank account token.
	bank_account[account_number]
	Bank account number - see local details for more information. Alternatively you can provide an iban.
	bank_account[bank_code]
	Bank code - see local details for more information. Alternatively you can provide an iban.
	bank_account[branch_code]
	Branch code - see local details for more information. Alternatively you can provide an iban.
	bank_account[country_code]
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	bank_account[iban]
	International Bank Account Number. Alternatively you can provide local details. IBANs are not accepted for Swedish bank accounts denominated in SEK - you must supply local details.
	customer[address_line1]
	The first line of the customer’s address. Required if mandate import scheme is either bacs or sepa.
	customer[address_line2]
	The second line of the customer’s address.
	customer[address_line3]
	The third line of the customer’s address.
	customer[city]
	The city of the customer’s address.
	customer[company_name]
	Customer’s company name. Required unless a given_name and family_name are provided. For Canadian customers, the use of a company_name value will mean that any mandate created from this customer will be considered to be a “Business PAD” (otherwise, any mandate will be considered to be a “Personal PAD”).
	customer[country_code]
	ISO 3166-1 alpha-2 code.
	customer[danish_identity_number]
	For Danish customers only. The civic/company number (CPR or CVR) of the customer. Must be supplied if the customer’s bank account is denominated in Danish krone (DKK).
	customer[email]
	Customer’s email address. Required in most cases, as this allows GoCardless to send notifications to this customer.
	customer[family_name]
	Customer’s surname. Required unless a company_name is provided.
	customer[given_name]
	Customer’s first name. Required unless a company_name is provided.
	customer[language]
	
ISO 639-1 code. Used as the language for notification emails sent by GoCardless if your organisation does not send its own (see compliance requirements). Currently only “en”, “fr”, “de”, “pt”, “es”, “it”, “nl”, “da”, “nb”, “sl”, “sv” are supported. If this is not provided, the language will be chosen based on the country_code (if supplied) or default to “en”.
	customer[phone_number]
	
ITU E.123 formatted phone number, including country code.
	customer[postal_code]
	The customer’s postal code. Required if mandate import scheme is either bacs or sepa.
	customer[region]
	The customer’s address region, county or department. For US customers a 2 letter ISO3166-2:US state code is required (e.g. CA for California).
	customer[swedish_identity_number]
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer. Must be supplied if the customer’s bank account is denominated in Swedish krona (SEK). This field cannot be changed once it has been set.
	amendment[original_creditor_id]
	The creditor identifier of the direct debit originator. Required if mandate
import scheme is sepa.
	amendment[original_creditor_name]
	Data about the original mandate to be moved or modified.
	amendment[original_mandate_reference]
	The unique SEPA reference for the mandate being amended. Required if mandate
import scheme is sepa.
	mandate[reference]
	Unique reference. Different schemes have different length and character set requirements. GoCardless will generate a unique reference satisfying the different scheme requirements if this field is left blank.
	record_identifier
	A unique identifier for this entry, which you can use (once the import has been
processed by GoCardless) to identify the records that have been created. Limited
to 255 characters.
	links[mandate_import]
	
required Unique identifier, beginning with “IM”.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/mandate_import_entries HTTP/1.1
Content-Type: application/json
{
 "mandate_import_entries": {
 "links": {
 "mandate_import": "IM000010790WX1"
 },
 "record_identifier": "bank-file.xml/line-1",
 "customer": {
 "company_name": "Jane's widgets",
 "email": "jane@janeswidgets.fr"
 },
 "bank_account": {
 "account_holder_name": "Jane Doe",
 "iban": "FR14BARC20000055779911"
 },
 "amendment": {
 "original_mandate_reference": "REFNMANDATE",
 "original_creditor_id": "FR123OTHERBANK",
 "original_creditor_name": "Existing DD Provider"
 }
 }
}

HTTP/1.1 201 Created
Content-Type: application/json
{
 "mandate_import_entries": {
 "record_identifier": "bank-file.xml/line-1",
 "created_at": "2018-03-03T00:00:00Z",
 "links": {
 "mandate_import": "IM000010790WX1"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandateImportEntries()->create([
 "params" => [
 "links" => [
 "mandate_import" => "IM000010790WX1"
],
 "record_identifier" => "bank-file.xml/line-1",
 "customer" => [
 "company_name" => "Jane's widgets",
 "email" => "jane@janeswidgets.fr"
],
 "bank_account" => [
 "account_holder_name" => "Jane Doe",
 "iban" => "FR14BARC20000055779911"
],
 "amendment" => [
 "original_mandate_reference" => "REFNMANDATE",
 "original_creditor_id" => "FR123OTHERBANK",
 "original_creditor_name" => "Existing DD Provider"
]
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandate_import_entries.create(params={
 "links": {
 "mandate_import": "IM000010790WX1"
 },
 "record_identifier": "bank-file.xml/line-1",
 "customer": {
 "company_name": "Jane's widgets",
 "email": "jane@janeswidgets.fr"
 },
 "bank_account": {
 "account_holder_name": "Jane Doe",
 "iban": "FR14BARC20000055779911"
 },
 "amendment": {
 "original_mandate_reference": "REFNMANDATE",
 "original_creditor_id": "FR123OTHERBANK",
 "original_creditor_name": "Existing DD Provider"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandate_import_entries.create(params: {
 links: {
 mandate_import: "IM000010790WX1"
 },
 record_identifier: "bank-file.xml/line-1",
 customer: {
 company_name: "Jane's widgets",
 email: "jane@janeswidgets.fr"
 },
 bank_account: {
 account_holder_name: "Jane Doe",
 iban: "FR14BARC20000055779911"
 },
 amendment: {
 original_mandate_reference: "REFNMANDATE",
 original_creditor_id: "FR123OTHERBANK",
 original_creditor_name: "Existing DD Provider"
 }
})

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

MandateImport import = client.mandateImportEntries().create()
 .withCustomerCompanyName("Jane's widgets")
 .withCustomerEmail("jane@janeswidgets.fr")
 .withBankAccountAccountHolderName("Jane Doe")
 .withBankAccountIban("FR14BARC20000055779911")
 .withAmendmentOriginalMandateReference("REFNMANDATE")
 .withAmendmentOriginalCreditorId("FR123OTHERBANK")
 .withAmendmentOriginalCreditorName("Existing DD Provider")
 .withLinksMandateImport("IM000010790WX1")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandateImportEntry = await client.mandateImportEntries.create({
 links: {
 mandate_import: "IM000010790WX1"
 },
 record_identifier: "bank-file.xml/line-1",
 customer: {
 company_name: "Jane's widgets",
 email: "jane@janeswidgets.fr"
 },
 bank_account: {
 account_holder_name: "Jane Doe",
 iban: "FR14BARC20000055779911"
 },
 amendment: {
 original_mandate_reference: "REFNMANDATE",
 original_creditor_id: "FR123OTHERBANK",
 original_creditor_name: "Existing DD Provider"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var request = new GoCardless.Services.MandateImportEntryCreateRequest()
{
 Customer = new GoCardless.Services.MandateImportEntryCreateRequest.MandateImportEntryCustomer()
 {
 CompanyName = "Jane's widgets"
 Email = "jane@janeswidgets.fr"
 }
 BankAccount = new GoCardless.Services.MandateImportEntryCreateRequest.MandateImportEntryBankAccount()
 {
 AccountHolderName = "Jane Doe"
 Iban = "FR14BARC20000055779911"
 }
 Amendment = new GoCardless.Services.MandateImportEntryCreateRequest.MandateImportEntryAmendment()
 {
 OriginalMandateReference = "REFNMANDATE"
 OriginalCreditorId = "FR123OTHERBANK"
 OriginalCreditorName = "Existing DD Provider"
 }
 Links = new GoCardless.Services.MandateImportEntryCreateRequest.MandateImportEntryLinks()
 {
 MandateImport = "IM000010790WX1"
 }
};

var importResponse = await gocardless.MandateImportEntries.CreateAsync(request);
GoCardless.Resources.MandateImportEntry entry = importResponse.MandateImportEntry;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateImportEntryCreateParams := gocardless.MandateImportEntryCreateParams{
 Customer: gocardless.MandateImportEntryCreateParamsCustomer{
 CompanyName: "Théâtre du Palais-Royal",
 Email: "moliere@tdpr.fr",
 },
 BankAccount: gocardless.MandateImportEntryCreateParamsBankAccount{
 AccountHolderName: "Jean-Baptiste Poquelin",
 Iban: "FR14BARC20000055779911",
 },
 Amendment: &gocardless.MandateImportEntryCreateParamsAmendment{
 OriginalMandateReference: "REFMANDATE",
 OriginalCreditorId: "FR123OTHERBANK",
 OriginalCreditorName: "Amphitryon",
 },
 Links: gocardless.MandateImportEntryCreateParamsLinks{
 MandateImport: "IM000010790WX1",
 },
 }

 mandateImportEntry, err := client.MandateImportEntries.Create(context, mandateImportEntryCreateParams)

}

 List all mandate import entries

For an existing mandate import, this endpoint lists all of the entries attached.

After a mandate import has been submitted, you can use this endpoint to associate records
in your system (using the record_identifier that you provided when creating the
mandate import).

Relative endpoint: GET /mandate_import_entries

Parameters

	mandate_import
	
required Unique identifier, beginning with “IM”.
	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	limit
	Number of records to return.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/mandate_import_entries?mandate_import=IM000010790WX1 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandate_import_entries": [
 {
 "record_identifier": "bank-file.xml/line-2",
 "created_at": "2018-03-03T00:00:01Z",
 "links": {
 "mandate_import": "IM000010790WX1"
 }
 },
 {
 "record_identifier": "bank-file.xml/line-1",
 "created_at": "2018-03-03T00:00:00Z",
 "links": {
 "mandate_import": "IM000010790WX1"
 }
 }
],
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandateImportEntries()->all([
 "params" => ["mandate_import" => "IM000010790WX1"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandate_import_entries.all(
 params= { "mandate_import": "IM000010790WX1" }
).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandate_import_entries.all(
 params: {
 "mandate_import" => "IM000010790WX1"
 }
).each { |entry| puts entry.record_identifier }

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (MandateImportEntry entry : client.mandateImportEntries().all().withMandateImport("IM000010790WX1").execute()) {
 System.out.println(entry.getRecordIdentifier());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const mandateImportEntries = await client.mandateImportEntries.list();

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var request = new GoCardless.Services.MandateImportEntryListRequest()
{
 MandateImport = "IM000010790WX1"
};

var response = gocardless.MandateImportEntries.All(request);
foreach (GoCardless.Resources.MandateImportEntry entry in response)
{
 Console.WriteLine(entry.RecordIdentifier);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandateImportEntryListParams := gocardless.MandateImportEntryListParams{
 MandateImport: "IM000010790WX1",
 }

 mandateImportEntryListPagingIterator := client.MandateImportEntries.All(context, mandateImportEntryListParams)
 for mandateImportEntryListPagingIterator.Next() {
 mandateImportEntryListResult, err := mandateImportEntryListPagingIterator.Value(ctx)
 for _, mandateImportEntry := mandateImportEntryListResult.MandateImportEntries {
 fmt.Println(mandateImportEntry.RecordIdentifier)
 }
 }

}

 Negative Balance Limits

The negative balance limit is a threshold for the creditor balance beyond which refunds are not permitted. The default limit is zero — refunds are not permitted if the creditor has a negative balance. The limit can be changed on a per-creditor basis.

Properties

	id
	Unique identifier, beginning with “NBL”.
	balance_limit
	The limit amount in pence (e.g. 10000 for a -100 GBP limit).
	created_at
	Fixed timestamp, recording when this limit was created.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	links[creator_user]
	ID of the creator_user who created this limit
	links[creditor]
	ID of creditor which this limit relates to

 List negative balance limits

Returns a cursor-paginated list of negative balance limits.

Relative endpoint: GET /negative_balance_limits

Restricted: This endpoint is restricted to GoCardless Embed customers. Please contact us if you are interested in using this product.

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	creditor
	Unique identifier, beginning with “CR”.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	limit
	Number of records to return.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/negative_balance_limits?currency=GBP&creditor=CR123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "negative_balance_limits": [
 {
 "id": "NBL123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "balance_limit": "10000",
 "currency": "GBP",
 "links": {
 "creditor": "CR123"
 }
 }
]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->negativeBalanceLimits()->list([
 "params" => [
 "currency" => "GBP",
 "creditor" => "CR123",
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.negative_balance_limits.list(params={
 "currency": "GBP",
 "creditor": "CR123",
}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.negative_balance_limits.list(
 params: {
 currency: "GBP",
 creditor: "CR123",
 }
).records

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.negativeBalanceLimits().
 all().
 withCreditor("CR123").
 withCurrency("GBP").
 execute()

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

await client.negativeBalanceLimits.list({
 currency: "GBP",
 creditor: "CR123",
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var request = new GoCardless.Services.NegativeBalanceLimitListRequest()
{
 Currency = "GBP",
 Creditor = "CR123",
};

gocardless.NegativeBalanceLimits.All(request);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 params := gocardless.NegativeBalanceLimitListParams{
 Currency: "GBP",
 Creditor: "CR123",
 }

 response, err := client.NegativeBalanceLimits.List(context, params)

}

 Create a negative balance limit

Creates a new negative balance limit, which replaces the existing limit (if present) for that currency and creditor combination.

Relative endpoint: POST /negative_balance_limits

Restricted: This endpoint is restricted to GoCardless Embed customers. Please contact us if you are interested in using this product.

Parameters

	balance_limit
	
required The limit amount in pence (e.g. 10000 for a -100 GBP limit).
	currency
	
required ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	links[creditor]
	ID of the creditor this limit relates to

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/negative_balance_limits HTTP/1.1
Content-Type: application/json
{
 "negative_balance_limits": {
 "currency": "GBP",
 "balance_limit": "10000",
 "links": {
 "creditor": "CR123"
 }
 }
}

HTTP/1.1 201 Created
Content-Type: application/json
{
 "negative_balance_limits": {
 "id": "NBL123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "currency": "GBP",
 "balance_limit": "10000",
 "links": {
 "creditor": "CR123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->negativeBalanceLimits()->create([
 "params" => [
 "currency" => "GBP",
 "balance_limit" => "10000",
 "links" => ["creditor" => "CR123"],
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.negative_balance_limits.create(params={
 "balance_limit": "10000",
 "currency": "GBP",
 "links": {
 "creditor": "CR123",
 },
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.negative_balance_limits.create(
 params: {
 balance_limit: "10000",
 currency: "GBP",
 links: {
 creditor: "CR123",
 },
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.negativeBalanceLimits().create()
 .withCurrency("GBP")
 .withBalanceLimit(10000)
 .withLinksCreditor("CR123")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

await client.negative_balance_limits.create({
 currency: "GBP",
 balance_limit: 10000,
 links: {
 creditor: "CR123"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var request = new GoCardless.Services.NegativeBalanceLimitCreateRequest()
{
 Currency = "GBP",
 BalanceLimit = 10000,
 Links = new GoCardless.Services.NegativeBalanceLimitCreateRequest.NegativeBalanceLimitLinks()
 {
 Creditor = "CR123"
 },
};

await gocardless.NegativeBalanceLimits.CreateAsync(request);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 createParams := gocardless.NegativeBalanceLimitCreateParams{
 Currency: "GBP",
 BalanceLimit: 10000,
 Links: gocardless.NegativeBalanceLimitCreateParamsLinks{
 Creditor: "CR123",
 },
 }

 limit, err := client.negativeBalanceLimits().Create(context, createParams)

}

 Payer Authorisations

 Don’t use Payer Authorisations for new integrations.
 It is deprecated in favour of

 Billing Requests. Use Billing Requests to build any future integrations.

Payer Authorisation resource acts as a wrapper for creating customer, bank account and mandate details in a single request.
PayerAuthorisation API enables the integrators to build their own custom payment pages.

The process to use the Payer Authorisation API is as follows:

	Create a Payer Authorisation, either empty or with already available information
	Update the authorisation with additional information or fix any mistakes
	Submit the authorisation, after the payer has reviewed their information
	[coming soon] Redirect the payer to the verification mechanisms from the response of the Submit request (this will be introduced as a non-breaking change)
	Confirm the authorisation to indicate that the resources can be created

After the Payer Authorisation is confirmed, resources will eventually be created as it’s an asynchronous process.

To retrieve the status and ID of the linked resources you can do one of the following:

	 Listen to payer_authorisation_completed webhook (recommended)
	 Poll the GET endpoint

	 Poll the GET events API https://api.gocardless.com/events?payer_authorisation={id}&action=completed

 Note that the create and update endpoints behave differently than
 other existing create and update endpoints. The Payer Authorisation is still saved if incomplete data is provided.
 We return the list of incomplete data in the incomplete_fields along with the resources in the body of the response.
 The bank account details(account_number, bank_code & branch_code) must be sent together rather than splitting across different request for both create and update endpoints.

 The API is designed to be flexible and allows you to collect information in multiple steps without storing any sensitive data in the browser or in your servers.

Properties

	id
	Unique identifier, beginning with “PA”.
	bank_account[account_holder_name]
	Name of the account holder, as known by the bank. Usually this is the same as the name stored with the linked creditor. This field will be transliterated, upcased and truncated to 18 characters. This field is required unless the request includes a customer bank account token.
	bank_account[account_number]
	Bank account number - see local details for more information. Alternatively you can provide an iban.
	bank_account[account_number_ending]
	The last few digits of the account number. Currently 4 digits for NZD bank accounts and 2 digits for other currencies.
	bank_account[account_number_suffix]
	Account number suffix (only for bank accounts denominated in NZD) - see local details for more information.
	bank_account[account_type]
	Bank account type. Required for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	bank_account[bank_code]
	Bank code - see local details for more information. Alternatively you can provide an iban.
	bank_account[branch_code]
	Branch code - see local details for more information. Alternatively you can provide an iban.
	bank_account[country_code]
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	bank_account[currency]
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	bank_account[iban]
	International Bank Account Number. Alternatively you can provide local details. IBANs are not accepted for Swedish bank accounts denominated in SEK - you must supply local details.
	bank_account[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	created_at
	
Timestamp, recording when this Payer Authorisation was created.
	customer[address_line1]
	The first line of the customer’s address.
	customer[address_line2]
	The second line of the customer’s address.
	customer[address_line3]
	The third line of the customer’s address.
	customer[city]
	The city of the customer’s address.
	customer[company_name]
	Customer’s company name. Required unless a given_name and family_name are provided. For Canadian customers, the use of a company_name value will mean that any mandate created from this customer will be considered to be a “Business PAD” (otherwise, any mandate will be considered to be a “Personal PAD”).
	customer[country_code]
	ISO 3166-1 alpha-2 code.
	customer[danish_identity_number]
	For Danish customers only. The civic/company number (CPR or CVR) of the customer. Must be supplied if the customer’s bank account is denominated in Danish krone (DKK).
	customer[email]
	Customer’s email address. Required in most cases, as this allows GoCardless to send notifications to this customer.
	customer[family_name]
	Customer’s surname. Required unless a company_name is provided.
	customer[given_name]
	Customer’s first name. Required unless a company_name is provided.
	customer[locale]
	An IETF Language Tag, used for both language
and regional variations of our product.
	customer[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	customer[postal_code]
	The customer’s postal code.
	customer[region]
	The customer’s address region, county or department. For US customers a 2 letter ISO3166-2:US state code is required (e.g. CA for California).
	customer[swedish_identity_number]
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer. Must be supplied if the customer’s bank account is denominated in Swedish krona (SEK). This field cannot be changed once it has been set.
	incomplete_fields
	An array of fields which are missing and is required to set up the mandate.

 Each instance will contain these properties:

 	
 field: The root resource.

	
 message: A localised error message

	
 request_pointer: The path to the field e.g. “/payer_authorisations/customer/city”

	mandate[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	mandate[payer_ip_address]
	For ACH customers only. Required for ACH customers. A string containing the IP address of the payer to whom the mandate belongs (i.e. as a result of their completion of a mandate setup flow in their browser).

 Not required for creating offline mandates where authorisation_source is set to telephone or paper.

	mandate[reference]
	Unique reference. Different schemes have different length and character set requirements. GoCardless will generate a unique reference satisfying the different scheme requirements if this field is left blank.
	mandate[scheme]
	A bank payment scheme. Currently “ach”, “autogiro”, “bacs”, “becs”, “becs_nz”, “betalingsservice”, “faster_payments”, “pad”, “pay_to” and “sepa_core” are supported.
	status
	One of:

 	
 created: The PayerAuthorisation has been created, and not been confirmed yet

	
 submitted: The payer information has been submitted

	
 confirmed: PayerAuthorisation is confirmed and resources are ready to be created

	
 completed: The PayerAuthorisation has been completed and customer, bank_account and mandate has been created

	
 failed: The PayerAuthorisation has failed and customer, bank_account and mandate is not created

	links[bank_account]
	Unique identifier, beginning with “BA”.
	links[customer]
	Unique identifier, beginning with “CU”.
	links[mandate]
	Unique identifier, beginning with “MD”. Note that this prefix may not apply to mandates created before 2016.

 Get a single Payer Authorisation

Retrieves the details of a single existing Payer Authorisation. It can be used for polling the status of a Payer Authorisation.

Relative endpoint: GET /payer_authorisations/PA123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/payer_authorisations/PAU123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
"payer_authorisations": {
 "id": "PAU123",
 "created_at": "2020-09-11T14:04:50.579Z",
 "customer": {
 "address_line1": "Unit 12, 2 Somerset Road",
 "address_line2": "terertertre",
 "city": "London",
 "company_name": "",
 "country_code": "US",
 "email": "mail@example.com",
 "family_name": "test",
 "given_name": "lastname",
 "postal_code": "1234",
 "region": "AR",
 "metadata": {}
 },
 "bank_account": {
 "account_holder_name": "test lastname",
 "account_number_ending": "11",
 "account_type": "savings",
 "country_code": "US",
 "bank_name": "COMMUNITY FEDERAL SAVINGS BANK",
 "metadata": {}
 },
 "mandate": {
 "scheme": "ach",
 "metadata": {}
 },
 "status": "completed",
 "incomplete_fields": [],
 "links": {
 "customer": "CU00123",
 "bank_account": "BA00123",
 "mandate": "MD000123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payerAuthorisations()->get("PAU123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payer_authorisations.get("PAU123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payer_authorisations.get("PAU123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

PayerAuthorisation payerAuthorisation = client.payerAuthorisations.get("PAU123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payerAuthorisation = await client.payerAuthorisations.find("PAU123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var payerAuthorisationResponse = await gocardless.payerAuthorisations.GetAsync("PAU123");
GoCardless.Resources.PayerAuthorisation payerAuthorisation = payerAuthorisationResponse.PayerAuthorisation;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 payerAuthorisation, err := clienet.PayerAuthorisations.Get(context, "PAU123")

}

 Create a Payer Authorisation

Creates a Payer Authorisation. The resource is saved to the database even if incomplete. An empty array of incomplete_fields means that the resource is valid. The ID of the resource is used for the other actions. This endpoint has been designed this way so you do not need to save any payer data on your servers or the browser while still being able to implement a progressive solution, such as a multi-step form.

Relative endpoint: POST /payer_authorisations

Parameters

	bank_account[account_holder_name]
	Name of the account holder, as known by the bank. Usually this is the same as the name stored with the linked creditor. This field will be transliterated, upcased and truncated to 18 characters. This field is required unless the request includes a customer bank account token.
	bank_account[account_number]
	Bank account number - see local details for more information. Alternatively you can provide an iban.
	bank_account[account_number_ending]
	The last few digits of the account number. Currently 4 digits for NZD bank accounts and 2 digits for other currencies.
	bank_account[account_number_suffix]
	Account number suffix (only for bank accounts denominated in NZD) - see local details for more information.
	bank_account[account_type]
	Bank account type. Required for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	bank_account[bank_code]
	Bank code - see local details for more information. Alternatively you can provide an iban.
	bank_account[branch_code]
	Branch code - see local details for more information. Alternatively you can provide an iban.
	bank_account[country_code]
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	bank_account[currency]
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	bank_account[iban]
	International Bank Account Number. Alternatively you can provide local details. IBANs are not accepted for Swedish bank accounts denominated in SEK - you must supply local details.
	bank_account[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	customer[address_line1]
	The first line of the customer’s address.
	customer[address_line2]
	The second line of the customer’s address.
	customer[address_line3]
	The third line of the customer’s address.
	customer[city]
	The city of the customer’s address.
	customer[company_name]
	Customer’s company name. Required unless a given_name and family_name are provided. For Canadian customers, the use of a company_name value will mean that any mandate created from this customer will be considered to be a “Business PAD” (otherwise, any mandate will be considered to be a “Personal PAD”).
	customer[country_code]
	ISO 3166-1 alpha-2 code.
	customer[danish_identity_number]
	For Danish customers only. The civic/company number (CPR or CVR) of the customer. Must be supplied if the customer’s bank account is denominated in Danish krone (DKK).
	customer[email]
	Customer’s email address. Required in most cases, as this allows GoCardless to send notifications to this customer.
	customer[family_name]
	Customer’s surname. Required unless a company_name is provided.
	customer[given_name]
	Customer’s first name. Required unless a company_name is provided.
	customer[locale]
	An IETF Language Tag, used for both language
and regional variations of our product.
	customer[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	customer[postal_code]
	The customer’s postal code.
	customer[region]
	The customer’s address region, county or department. For US customers a 2 letter ISO3166-2:US state code is required (e.g. CA for California).
	customer[swedish_identity_number]
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer. Must be supplied if the customer’s bank account is denominated in Swedish krona (SEK). This field cannot be changed once it has been set.
	mandate[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	mandate[payer_ip_address]
	For ACH customers only. Required for ACH customers. A string containing the IP address of the payer to whom the mandate belongs (i.e. as a result of their completion of a mandate setup flow in their browser).

 Not required for creating offline mandates where authorisation_source is set to telephone or paper.

	mandate[reference]
	Unique reference. Different schemes have different length and character set requirements. GoCardless will generate a unique reference satisfying the different scheme requirements if this field is left blank.
	mandate[scheme]
	A bank payment scheme. Currently “ach”, “autogiro”, “bacs”, “becs”, “becs_nz”, “betalingsservice”, “faster_payments”, “pad”, “pay_to” and “sepa_core” are supported.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/payer_authorisations HTTP/1.1
Content-Type: application/json
{
 "payer_authorisations": {
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "branch_code": "200000",
 "account_number": "55779911",
 "metadata": {}
 },
 "mandate": {
 "reference": "XYZ789",
 "metadata": {}
 }
 }
}

Example response with incomplete_fields

HTTP/1.1 201 Created
Location: /payer_authorisations/PA123
Content-Type: application/json
{
 "payer_authorisations": {
 "id": "PA123",
 "created_at": "2020-04-15T15:00:00.000Z",
 "status": "created",
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "account_number_ending": "11",
 "bank_name": "BARCLAYS BANK",
 "metadata": {}
 },
 "mandate": {
 "reference": "XYZ789",
 "metadata": {}
 },
 "links": {},
 "incomplete_fields":[
 {
 "field": "payer_authorisations",
 "message": "is required",
 "request_pointer": "/payer_authorisations/customer/address_line1"
 },
 {
 "field": "payer_authorisations",
 "message": "is required",
 "request_pointer": "/payer_authorisations/customer/city"
 },
 {
 "field": "payer_authorisations",
 "message": "is required",
 "request_pointer": "/payer_authorisations/customer/postal_code"
 }
]
 }
}

Example response with all properties

HTTP/1.1 201 Created
Content-Type: application/json
{
 "payer_authorisations": {
 "id": "PA123",
 "created_at": "2020-04-15T15:00:00.000Z",
 "status": "created",
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "account_number_ending": "11",
 "bank_name": "BARCLAYS BANK",
 "metadata": {}
 },
 "mandate": {
 "reference": "XYZ789",
 "metadata": {}
 },
 "links": {},
 "incomplete_fields": []
 }
}

Example response with errors

 HTTP/1.1 422 Unprocessable entity
 Content-Type: application/json
{
 "error": {
 "message": "Validation failed",
 "errors": [
 {
 "field": "bank_account",
 "message": "is the wrong length (should be 8 characters)",
 "request_pointer": "/payer_authorisations/bank_account/account_number"
 },
 {
 "field": "bank_account",
 "message": "is required",
 "request_pointer": "/payer_authorisations/bank_account/branch_code"
 },
 {
 "field": "bank_account",
 "message": "is required",
 "request_pointer": "/payer_authorisations/bank_account/branch_code"
 }
],
 "documentation_url": "https://developer.gocardless.com/api-reference#validation_failed",
 "type": "validation_failed",
 "request_id": "5a83ff47-cfb0-4bb8-8bcd-a3bddf0118e1",
 "code": 422
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payerAuthorisations()->create([
 "params" => ["customer" => [
 "email" => "mail@example.com",
 "given_name" => "Name",
 "family_name" => "Surname",
 "metadata" => [
 "salesforce_id" => "EFGH5678"
]
],
 "bank_account" => [
 "account_holder_name" => "Name Surname",
 "branch_code" => "200000",
 "account_number" => "55779911",
 "metadata" => []
],
 "mandate" => [
 "reference" => "XYZ789",
 "metadata" => []
]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payer_authorisations.create(params={
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {}
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "branch_code": "200000",
 "account_number": "55779911",
 "metadata": {}
 },
 "mandate": {
 "reference": "XYZ789",
 "metadata": {}
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payer_authorisations.create(
 params: {
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "branch_code": "200000",
 "account_number": "55779911",
 "metadata": {}
 },
 "mandate": {
 "reference": "XYZ789",
 "metadata": {}
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

PayerAuthorisation payerAuthorisation = client.payerAuthorisations().create()
 .withCustomerEmail("mail@example.com")
 .withCustomerGivenName("Name")
 .withCustomerFamilyName("Surname")
 .withCustomerMetadata()
 .withBankAccountAccountHolderName("Name Surname")
 .withBankAccountBranchCode("200000")
 .withBankAccountAccountNumber("55779911")
 .withBankAccountMetadata()
 .withMandateReference("XYZ789")
 .withMandateMetadata()
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payerAuthorisation = await client.payerAuthorisations.create({
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "branch_code": "200000",
 "account_number": "55779911",
 "metadata": {}
 },
 "mandate": {
 "reference": "XYZ789",
 "metadata": {}
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customer = new GoCardless.Services.PayerAuthorisationCreateRequest.PayerAuthorisationCustomer()
{
 "email" = "mail@example.com",
 "given_name" = "Name",
 "family_name" = "Surname",
 "metadata" = {}
};
var bankAccount = new GoCardless.Services.PayerAuthorisationCreateRequest.PayerAuthorisationBankAccount()
{
 "account_holder_name" = "Name Surname",
 "branch_code" = "200000",
 "account_number" = "55779911",
 "metadata" = {}
};
var mandate = new GoCardless.Services.PayerAuthorisationCreateRequest.PayerAuthorisationMandate()
{
 "reference" = "XYZ789",
 "metadata" = {}
};
var PayerAuthorisationRequest = new GoCardless.Services.PayerAuthorisationCreateRequest()
{
 Customer = customer,
 BankAccount = bankAccount,
 Mandate = mandate
};
var PayerAuthorisationResponse = await gocardless.PayerAuthorisations.CreateAsync(PayerAuthorisationRequest);
GoCardless.Resources.PayerAuthorisation payerAuthorisation = PayerAuthorisationResponse.PayerAuthorisation;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 payerAuthorisationCreateParams := gocardless.PayerAuthorisationCreateParams{
 Customer: gocardless.PayerAuthorisationCreateParamsCustomer{
 Email: "mail@example.com",
 GivenName: "Name",
 FamilyName: "Surname",
 Metadata: map[string]interface{}{"salesforce_id": "EFGH5678"},
 },
 BankAccount: gocardless.PayerAuthorisationCreateParamsBankAccount{
 AccountHolderName: "Name Surname",
 BranchCode: "200000",
 AccountNumber: "55779911",
 },
 Mandate: gocardless.PayerAuthorisationCreateParamsMandate{
 Reference: "XYZ789",
 },
 }

 payerAuthorisation, err := client.PayerAuthorisations.Create(context, payerAuthorisationCreateParams)

}

 Update a Payer Authorisation

Updates a Payer Authorisation. Updates the Payer Authorisation with the request data. Can be invoked as many times as needed. Only fields present in the request will be modified. An empty array of incomplete_fields means that the resource is valid. This endpoint has been designed this way so you do not need to save any payer data on your servers or the browser while still being able to implement a progressive solution, such a multi-step form. Note that in order to update the metadata attribute values it must be sent completely as it overrides the previously existing values.

Relative endpoint: PUT /payer_authorisations/PA123

Parameters

	bank_account[account_holder_name]
	Name of the account holder, as known by the bank. Usually this is the same as the name stored with the linked creditor. This field will be transliterated, upcased and truncated to 18 characters. This field is required unless the request includes a customer bank account token.
	bank_account[account_number]
	Bank account number - see local details for more information. Alternatively you can provide an iban.
	bank_account[account_number_ending]
	The last few digits of the account number. Currently 4 digits for NZD bank accounts and 2 digits for other currencies.
	bank_account[account_number_suffix]
	Account number suffix (only for bank accounts denominated in NZD) - see local details for more information.
	bank_account[account_type]
	Bank account type. Required for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	bank_account[bank_code]
	Bank code - see local details for more information. Alternatively you can provide an iban.
	bank_account[branch_code]
	Branch code - see local details for more information. Alternatively you can provide an iban.
	bank_account[country_code]
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	bank_account[currency]
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	bank_account[iban]
	International Bank Account Number. Alternatively you can provide local details. IBANs are not accepted for Swedish bank accounts denominated in SEK - you must supply local details.
	bank_account[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	customer[address_line1]
	The first line of the customer’s address.
	customer[address_line2]
	The second line of the customer’s address.
	customer[address_line3]
	The third line of the customer’s address.
	customer[city]
	The city of the customer’s address.
	customer[company_name]
	Customer’s company name. Required unless a given_name and family_name are provided. For Canadian customers, the use of a company_name value will mean that any mandate created from this customer will be considered to be a “Business PAD” (otherwise, any mandate will be considered to be a “Personal PAD”).
	customer[country_code]
	ISO 3166-1 alpha-2 code.
	customer[danish_identity_number]
	For Danish customers only. The civic/company number (CPR or CVR) of the customer. Must be supplied if the customer’s bank account is denominated in Danish krone (DKK).
	customer[email]
	Customer’s email address. Required in most cases, as this allows GoCardless to send notifications to this customer.
	customer[family_name]
	Customer’s surname. Required unless a company_name is provided.
	customer[given_name]
	Customer’s first name. Required unless a company_name is provided.
	customer[locale]
	An IETF Language Tag, used for both language
and regional variations of our product.
	customer[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	customer[postal_code]
	The customer’s postal code.
	customer[region]
	The customer’s address region, county or department. For US customers a 2 letter ISO3166-2:US state code is required (e.g. CA for California).
	customer[swedish_identity_number]
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer. Must be supplied if the customer’s bank account is denominated in Swedish krona (SEK). This field cannot be changed once it has been set.
	mandate[metadata]
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	mandate[payer_ip_address]
	For ACH customers only. Required for ACH customers. A string containing the IP address of the payer to whom the mandate belongs (i.e. as a result of their completion of a mandate setup flow in their browser).

 Not required for creating offline mandates where authorisation_source is set to telephone or paper.

	mandate[reference]
	Unique reference. Different schemes have different length and character set requirements. GoCardless will generate a unique reference satisfying the different scheme requirements if this field is left blank.
	mandate[scheme]
	A bank payment scheme. Currently “ach”, “autogiro”, “bacs”, “becs”, “becs_nz”, “betalingsservice”, “faster_payments”, “pad”, “pay_to” and “sepa_core” are supported.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/payer_authorisations/PA123 HTTP/1.1
Content-Type: application/json
{
 "payer_authorisations": {
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "branch_code": "200000",
 "account_number": "55779911"
 },
 "mandate": {
 "reference": "XYZ789",
 }
 }
}

Example response with incomplete fields

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payer_authorisations": {
 "id": "PA123",
 "created_at": "2020-04-15T15:00:00.000Z",
 "status": "created",
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "account_number_ending": "11",
 "bank_name": "BARCLAYS BANK",
 "metadata": {}
 },
 "mandate": {
 "reference": "XYZ789",
 "metadata": {}
 }
 "links": {},
 "incomplete_fields":[
 {
 "field": "payer_authorisations",
 "message": "is required",
 "request_pointer": "/payer_authorisations/customer/address_line1"
 },
 {
 "field": "payer_authorisations",
 "message": "is required",
 "request_pointer": "/payer_authorisations/customer/city"
 },
 {
 "field": "payer_authorisations",
 "message": "is required",
 "request_pointer": "/payer_authorisations/customer/postal_code"
 }
]
 }
}

Example response where Payer Authorisation is updated after submitting

HTTP/1.1 422 Bad Request
Content-Type: application/json
{
 "error": {
 "message": "The Payer Authorisation cannot be updated after submitted",
 "errors": [
 {
 "reason": "payer_authorisation_cannot_update_after_submit",
 "message": "The Payer Authorisation cannot be updated after submitting"
 }
],
 "documentation_url": "https://developer.gocardless.com/api-reference#payer_authorisation_cannot_update_after_submit",
 "type": "invalid_state",
 "request_id": "...",
 "code": 422
 }
}

 Example response with errors

HTTP/1.1 422 Unprocessable entity
Content-Type: application/json
{

 "error": {
 "message": "Validation failed",
 "errors": [
 {
 "field": "customer",
 "message": "is not valid",
 "request_pointer": "/payer_authorisations/customer/email"
 }
],
 "documentation_url": "https://developer.gocardless.com/api-reference#validation_failed",
 "type": "validation_failed",
 "request_id": "2f0db86c-251c-432a-a7af-b77f1a426a37",
 "code": 422
 }

}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payerAuthorisations()->update("PA123", [
 "params" => ["customer" => [
 "email" => "mail@example.com",
 "given_name" => "Name",
 "family_name" => "Surname",
 "metadata" => {
 "salesforce_id" => "EFGH5678"
 }
],
 "bank_account" => [
 "account_holder_name" => "Name Surname",
 "branch_code" => "200000",
 "account_number" => "55779911",
],
 "mandate" => [
 "reference" => "XYZ789",
]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payer_authorisations.update("PA123", params={
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "branch_code": "200000",
 "account_number": "55779911",
 },
 "mandate": {
 "reference": "XYZ789",
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payer_authorisations.update(
 "PA123",
 params: {
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "branch_code": "200000",
 "account_number": "55779911",
 },
 "mandate": {
 "reference": "XYZ789",
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

PayerAuthorisation payerAuthorisation = client.payerAuthorisations().update("PA123")
 .withCustomerEmail("mail@example.com")
 .withCustomerGivenName("Name")
 .withCustomerFamilyName("Surname")
 .withCustomerMetadata("salesforce_id", "EFGH5678")
 .withBankAccountAccountHolderName("Name Surname")
 .withBankAccountBranchCode("200000")
 .withBankAccountAccountNumber("55779911")
 .withMandateReference("XYZ789")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payerAuthorisation = await client.payerAuthorisations.update(
 "PA123",
 {
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "branch_code": "200000",
 "account_number": "55779911",
 "metadata": {}
 },
 "mandate": {
 "reference": "XYZ789",
 "metadata": {}
 }
 });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var customer = new GoCardless.Services.PayerAuthorisationUpdateRequest.PayerAuthorisationCustomer()
{
 "email" = "mail@example.com",
 "given_name" = "Name",
 "family_name" = "Surname",
 "metadata" = {
 "salesforce_id" = "EFGH5678"
 }
};
var bankAccount = new GoCardless.Services.PayerAuthorisationUpdateRequest.PayerAuthorisationBankAccount()
{
 "account_holder_name" = "Name Surname",
 "branch_code" = "200000",
 "account_number" = "55779911",
};
var mandate = new GoCardless.Services.PayerAuthorisationUpdateRequest.PayerAuthorisationMandate()
{
 "reference" = "XYZ789",
};
var PayerAuthorisationRequest = new GoCardless.Services.PayerAuthorisationUpdateRequest()
{
 Customer = customer,
 BankAccount = bankAccount,
 Mandate = mandate
};
var PayerAuthorisationResponse = await gocardless.PayerAuthorisations.UpdateAsync("PA123", PayerAuthorisationRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 payerAuthorisationUpdateParams := gocardless.PayerAuthorisationUpdateParams{
 Customer: gocardless.PayerAuthorisationUpdateParamsCustomer{
 Email: "mail@example.com",
 GivenName: "Name",
 FamilyName: "Surname",
 Metadata: map[string]interface{}{"salesforce_id": "EFGH5678"},
 },
 BankAccount: gocardless.PayerAuthorisationUpdateParamsBankAccount{
 AccountHolderName: "Name Surname",
 BranchCode: "200000",
 AccountNumber: "55779911",
 },
 Mandate: gocardless.PayerAuthorisationUpdateParamsMandate{
 Reference: "XYZ789",
 },
 }

 payerAuthorisation, err := client.PayerAuthorisations.Update(context, payerAuthorisationUpdateParams)

}

 Submit a Payer Authorisation

Submits all the data previously pushed to this PayerAuthorisation for verification. This time, a 200 HTTP status is returned if the resource is valid and a 422 error response in case of validation errors. After it is successfully submitted, the Payer Authorisation can no longer be edited.

Relative endpoint: POST /payer_authorisations/PA123/actions/submit

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/payer_authorisations/PA123/actions/submit HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payer_authorisations": {
 "id": "PA123",
 "created_at": "2020-04-15T15:00:00.000Z",
 "status": "submitted",
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "account_number_ending": "11",
 "bank_name": "BARCLAYS BANK",
 "metadata": {}
 },
 "mandate": {
 "reference": "XYZ789",
 "metadata": {}
 },
 "links": {},
 "incomplete_fields": []
 }
}

or

Example response with errors

HTTP/1.1 422 Unprocessable entity
Content-Type: application/json
{

 "error": {
 "message": "Validation failed",
 "errors": [
 {
 "field": "customer",
 "message": "is not valid",
 "request_pointer": "/payer_authorisations/customer/email"
 }
],
 "documentation_url": "https://developer.gocardless.com/api-reference#validation_failed",
 "type": "validation_failed",
 "request_id": "2f0db86c-251c-432a-a7af-b77f1a426a37",
 "code": 422
 }

}

or

Example response if the resource is already submitted

HTTP/1.1 304 Not modified
{}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payerAuthorisations()->submit("PAU123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payer_authorisations.submit("PAU123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payer_authorisations.submit("PAU123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

PayerAuthorisation payerAuthorisation = client.payerAuthorisations.submit("PAU123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payerAuthorisation = await client.payerAuthorisations.submit("PAU123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var payerAuthorisationResponse = await gocardless.payerAuthorisations.SubmitAsync("PAU123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 payerAuthorisation, err := client.PayerAuthorisations.Submit(context, "PAU123")

}

 Confirm a Payer Authorisation

Confirms the Payer Authorisation, indicating that the resources are ready to be created.
A Payer Authorisation cannot be confirmed if it hasn’t been submitted yet.

 The main use of the confirm endpoint is to enable integrators to acknowledge the end of the setup process.
 They might want to make the payers go through some other steps after they go through our flow or make them go through the necessary verification mechanism (upcoming feature).

Relative endpoint: POST /payer_authorisations/PA123/actions/confirm

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/payer_authorisations/PA123/actions/confirm HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payer_authorisations": {
 "id": "PA123",
 "created_at": "2020-04-15T15:00:00.000Z",
 "status": "confirmed",
 "customer": {
 "email": "mail@example.com",
 "given_name": "Name",
 "family_name": "Surname",
 "metadata": {
 "salesforce_id": "EFGH5678"
 }
 },
 "bank_account": {
 "account_holder_name": "Name Surname",
 "account_number_ending": "11",
 "bank_name": "BARCLAYS BANK",
 "metadata": {}
 },
 "mandate": {
 "reference": "XYZ789",
 "metadata": {}
 },
 "links": {},
 "incomplete_fields": []
 }
}

or

HTTP/1.1 422 Bad Request
Content-Type: application/json
{
 "error": {
 "message": "The Payer Authorisation needs to be submitted before confirmation",
 "errors": [
 {
 "reason": "payer_authorisation_submit_before_confirm",
 "message": "The Payer Authorisation needs to be submitted before confirmation"
 }
],
 "documentation_url": "https://developer.gocardless.com/api-reference#payer_authorisation_submit_before_confirm",
 "type": "invalid_state",
 "request_id": "...",
 "code": 422
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payerAuthorisations()->confirm("PAU123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payer_authorisations.confirm("PAU123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payer_authorisations.confirm("PAU123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

PayerAuthorisation payerAuthorisation = client.payerAuthorisations.confirm("PAU123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payerAuthorisation = await client.payerAuthorisations.confirm("PAU123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var payerAuthorisationResponse = await gocardless.payerAuthorisations.ConfirmAsync("PAU123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 payerAuthorisation, err := client.PayerAuthorisations.Confirm(context, "PAU123")

}

 Payments

Payment objects represent payments from a customer to a creditor, taken against a Direct Debit mandate.

GoCardless will notify you via a webhook whenever the state of a payment changes.

Properties

	id
	Unique identifier, beginning with “PM”.
	amount
	Amount, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	amount_refunded
	Amount refunded, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	charge_date
	A future date on which the payment should be collected. If not specified, the payment will be collected as soon as possible. If the value is before the mandate’s next_possible_charge_date creation will fail. If the value is not a working day it will be rolled forwards to the next available one.
	created_at
	Fixed timestamp, recording when this resource was created.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	description
	A human-readable description of the payment. This will be included in the notification email GoCardless sends to your customer if your organisation does not send its own notifications (see compliance requirements).
	faster_ach
	This field indicates whether the ACH payment is processed through Faster
ACH or standard ACH.

 It is only present in the API response for ACH payments.

	fx[estimated_exchange_rate]
	Estimated rate that will be used in the foreign exchange of the amount into the fx_currency.
This will vary based on the prevailing market rate until the moment that it is paid out.
Present only before a resource is paid out. Has up to 10 decimal places.
	fx[exchange_rate]
	Rate used in the foreign exchange of the amount into the fx_currency.
Present only after a resource is paid out. Has up to 10 decimal places.
	fx[fx_amount]
	Amount that was paid out in the fx_currency after foreign exchange.
Present only after the resource has been paid out.
	fx[fx_currency]
	
ISO 4217 code for the currency in which amounts will be paid out (after foreign exchange). Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported. Present only if payouts will be (or were) made via foreign exchange.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	reference
	An optional reference that will appear on your customer’s bank statement. The character limit for this reference is dependent on the scheme.
 ACH - 10 characters
 Autogiro - 11 characters
 Bacs - 10 characters
 BECS - 30 characters
 BECS NZ - 12 characters
 Betalingsservice - 30 characters
 Faster Payments - 18 characters
 PAD - scheme doesn’t offer references
 PayTo - 18 characters
 SEPA - 140 characters
 Note that this reference must be unique (for each merchant) for the BECS scheme as it is a scheme requirement. Restricted: You can only specify a payment reference for Bacs payments (that is, when collecting from the UK) if you’re on the GoCardless Plus, Pro or Enterprise packages. Restricted: You can not specify a payment reference for Faster Payments.

	retry_if_possible
	On failure, automatically retry the payment using intelligent retries. Default is false. Important: To be able to use intelligent retries, Success+ needs to be enabled in GoCardless dashboard.

	status
	One of:

 	
 pending_customer_approval: we’re waiting for the customer to approve this payment

	
 pending_submission: the payment has been created, but not yet submitted to the banks

	
 submitted: the payment has been submitted to the banks

	
 confirmed: the payment has been confirmed as collected

	
 paid_out: the payment has been included in a payout

	
 cancelled: the payment has been cancelled

	
 customer_approval_denied: the customer has denied approval for the payment. You should contact the customer directly

	
 failed: the payment failed to be processed. Note that payments can fail after being confirmed if the failure message is sent late by the banks.

	
 charged_back: the payment has been charged back

	links[creditor]
	ID of creditor to which the collected payment will be sent.
	links[instalment_schedule]
	ID of instalment_schedule from which this payment was created.
Note: this property will only be present if this payment is part of an instalment schedule.
	links[mandate]
	ID of the mandate against which this payment should be collected.
	links[payout]
	ID of payout which contains the funds from this payment.
Note: this property will not be present until the payment has been successfully collected.
	links[subscription]
	ID of subscription from which this payment was created.
Note: this property will only be present if this payment is part of a subscription.

 Create a payment

Creates a new payment object.

This fails with a mandate_is_inactive error if the linked mandate is cancelled or has failed. Payments can be created against mandates with status of: pending_customer_approval, pending_submission, submitted, and active.

Relative endpoint: POST /payments

Warning: in Bacs, you have the option to provide a payment reference up to 10 characters in length. However, if you are providing custom mandate references (which can only be enabled by contacting support), the combined length of the two references separated by a dash character must not exceed 18 characters. Payment references may be up to 140 characters for SEPA, 11 for Autogiro and 30 for Betalingsservice, irrespective of the mandate reference.

Parameters

	amount
	
required Amount, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	currency
	
required ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	app_fee
	The amount to be deducted from the payment as the OAuth app’s fee, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	charge_date
	A future date on which the payment should be collected. If not specified, the payment will be collected as soon as possible. If the value is before the mandate’s next_possible_charge_date creation will fail. If the value is not a working day it will be rolled forwards to the next available one.
	description
	A human-readable description of the payment. This will be included in the notification email GoCardless sends to your customer if your organisation does not send its own notifications (see compliance requirements).
	faster_ach
	Set this to true or false in the request to create an ACH payment to
explicitly choose whether the payment should be processed through Faster
ACH or standard ACH, rather than relying on the presence or absence of the
charge date to indicate that.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	reference
	An optional reference that will appear on your customer’s bank statement. The character limit for this reference is dependent on the scheme.
 ACH - 10 characters
 Autogiro - 11 characters
 Bacs - 10 characters
 BECS - 30 characters
 BECS NZ - 12 characters
 Betalingsservice - 30 characters
 Faster Payments - 18 characters
 PAD - scheme doesn’t offer references
 PayTo - 18 characters
 SEPA - 140 characters
 Note that this reference must be unique (for each merchant) for the BECS scheme as it is a scheme requirement. Restricted: You can only specify a payment reference for Bacs payments (that is, when collecting from the UK) if you’re on the GoCardless Plus, Pro or Enterprise packages. Restricted: You can not specify a payment reference for Faster Payments.

	retry_if_possible
	On failure, automatically retry the payment using intelligent retries. Default is false. Important: To be able to use intelligent retries, Success+ needs to be enabled in GoCardless dashboard.

	links[mandate]
	
required ID of the mandate against which this payment should be collected.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/payments HTTP/1.1
Content-Type: application/json
{
 "payments": {
 "amount": 100,
 "currency": "GBP",
 "charge_date": "2014-05-19",
 "reference": "WINEBOX001",
 "metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "mandate": "MD123"
 }
 }
}

HTTP/1.1 201 Created
Location: /payments/PM123
Content-Type: application/json
{
 "payments": {
 "id": "PM123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "charge_date": "2014-05-21",
 "amount": 100,
 "description": null,
 "currency": "GBP",
 "status": "pending_submission",
 "reference": "WINEBOX001",
 "metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "amount_refunded": 0,
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.1234567890"
 },
 "links": {
 "mandate": "MD123",
 "creditor": "CR123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payments()->create([
 "params" => ["amount" => 100,
 "currency" => "GBP",
 "metadata" => [
 "order_dispatch_date" => "2016-08-04"
],
 "links" => [
 "mandate" => "MD123"
]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payments.create(params={
 "amount": 100,
 "currency": "GBP",
 "charge_date": "2014-05-19",
 "reference": "WINEBOX001",
 "metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "mandate": "MD123"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payments.create(
 params: {
 amount: 1000,
 currency: "GBP",
 description: "Club membership fee",
 links: {
 mandate: "MD123"
 }
 },
 headers: {
 "Idempotency-Key" => "aaf50eb0-8ddb-4900-a97b-40ed794570a1"
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

import com.gocardless.services.PaymentService.PaymentCreateRequest.Currency;

Payment payment = client.payments().create()
 .withAmount(100)
 .withCurrency(Currency.GBP)
 .withChargeDate("2014-05-19")
 .withReference("WINEBOX001")
 .withMetadata("order_dispatch_date", "2014-05-22")
 .withLinksMandate("MD123")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payment = await client.payments.create({
 amount: 100,
 currency: "GBP",
 charge_date: "2014-05-19",
 reference: "WINEBOX001",
 metadata: {
 order_dispatch_date: "2014-05-22"
 },
 links: {
 mandate: "MD123"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var paymentRequest = new GoCardless.Services.PaymentCreateRequest()
{
 Amount = 1000,
 Currency = GoCardless.Services.PaymentCreateRequest.PaymentCurrency.GBP,
 Description = "Membership fee",
 Links = new GoCardless.Services.PaymentCreateRequest.PaymentLinks()
 {
 Mandate = "MD0123"
 }
};

var paymentResponse = await gocardless.Payments.CreateAsync(paymentRequest);
GoCardless.Resources.Payment payment = paymentResponse.Payment;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 paymentCreateParams := gocardless.PaymentCreateParams{
 Amount: 100,
 Currency: "GBP",
 ChargeDate: "2014-05-19",
 Reference: "WINEBOX001",
 Metadata: map[string]interface{}{"order_dispatch_date": "2014-05-22"},
 Links: gocardless.PaymentCreateParamsLinks{
 Mandate: "MD123",
 },
 }

 payment, err := client.Payments.Create(context, paymentCreateParams)

}

 List payments

Returns a cursor-paginated list of your payments.

Relative endpoint: GET /payments

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	charge_date[gt]
	Limit to records where the payment was or will be collected from the customer’s bank account after the specified date.
	charge_date[gte]
	Limit to records where the payment was or will be collected from the customer’s bank account on or after the specified date.
	charge_date[lt]
	Limit to records where the payment was or will be collected from the customer’s bank account before the specified date.
	charge_date[lte]
	Limit to records where the payment was or will be collected from the customer’s bank account on or before the specified date.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	creditor
	ID of a creditor to filter payments by. If you pass this parameter, you cannot also pass customer.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	customer
	ID of a customer to filter payments by. If you pass this parameter, you cannot also pass creditor.
	limit
	Number of records to return.
	mandate
	Unique identifier, beginning with “MD”. Note that this prefix may not apply to mandates created before 2016.
	sort_direction
	The direction to sort in.
One of:

 	
 asc

	
 desc

	sort_field
	Field by which to sort records.
One of:

 	
 charge_date

	
 amount

	status
	One of:

 	
 pending_customer_approval: we’re waiting for the customer to approve this payment

	
 pending_submission: the payment has been created, but not yet submitted to the banks

	
 submitted: the payment has been submitted to the banks

	
 confirmed: the payment has been confirmed as collected

	
 paid_out: the payment has been included in a payout

	
 cancelled: the payment has been cancelled

	
 customer_approval_denied: the customer has denied approval for the payment. You should contact the customer directly

	
 failed: the payment failed to be processed. Note that payments can fail after being confirmed if the failure message is sent late by the banks.

	
 charged_back: the payment has been charged back

	subscription
	Unique identifier, beginning with “SB”.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/payments HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 },
 "payments": [{
 "id": "PM123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "charge_date": "2014-05-15",
 "amount": 100,
 "description": null,
 "currency": "GBP",
 "status": "pending_submission",
 "reference": "WINEBOX001",
 "metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "amount_refunded": 0,
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.1234567890"
 },
 "links": {
 "mandate": "MD123",
 "creditor": "CR123"
 },
 "retry_if_possible": false
 }]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payments()->list();

$client->payments()->list([
 "params" => ["customer" => "CU123"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payments.list().records

client.payments.list(params={"customer": "CU123"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payments.list

@client.payments.list(params: { customer: "CU123" })

@client.payments.list.records.each { |payment| puts payment.inspect }

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (Payment payment : client.payments().all().withCustomer("CU123").execute()) {
 System.out.println(payment.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payments = await client.payments.list();

// List all payments past a certain date.
const payments = await client.payments.list({
 created_at: {
 gt: "2020-01-01T17:01:06.000Z"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var paymentRequest = new GoCardless.Services.PaymentListRequest()
{
 Customer = "CU000123"
};

var paymentListResponse = gocardless.Payments.All(paymentRequest);
foreach (GoCardless.Resources.Payment payment in paymentListResponse)
{
 Console.WriteLine(payment.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 paymentListParams := gocardless.PaymentListParams{
 CreatedAt: &gocardless.PaymentListParamsCreatedAt{
 Gt: "2020-01-01T17:01:06.000Z",
 },
 }

 paymentListResult, err := client.Payments.List(context, paymentListParams)
 for _, payment := paymentListResult.Payments {
 fmt.Println(payment.Id)
 }

}

 Get a single payment

Retrieves the details of a single existing payment.

Relative endpoint: GET /payments/PM123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/payments/PM123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payments": {
 "id": "PM123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "charge_date": "2014-05-15",
 "amount": 100,
 "description": null,
 "currency": "GBP",
 "status": "pending_submission",
 "reference": "WINEBOX001",
 "metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "amount_refunded": 0,
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.1234567890"
 },
 "links": {
 "mandate": "MD123",
 "creditor": "CR123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payments()->get("PM123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payments.get("PM123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payments.get("PM123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Payment payment = client.payments().get("PM123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payment = await client.payments.find("PM123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var paymentResponse = await gocardless.Payments.GetAsync("PM0123");
GoCardless.Resources.Payment payment = paymentResponse.Payment;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 payment, err := client.Payments.Get(context, "PM123")

}

 Update a payment

Updates a payment object. This accepts only the metadata parameter.

Relative endpoint: PUT /payments/PM123

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	retry_if_possible
	On failure, automatically retry the payment using intelligent retries. Default is false. Important: To be able to use intelligent retries, Success+ needs to be enabled in GoCardless dashboard.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/payments/PM123 HTTP/1.1
Content-Type: application/json
{
 "payments": {
 "metadata": {
 "key": "value"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payments": {
 "id": "PM123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "charge_date": "2014-05-15",
 "amount": 100,
 "description": null,
 "currency": "GBP",
 "status": "pending_submission",
 "reference": "WINEBOX001",
 "metadata": {
 "key": "value"
 },
 "amount_refunded": 0,
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.1234567890"
 },
 "links": {
 "mandate": "MD123",
 "creditor": "CR123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payments()->update("PM123", [
 "params" => ["metadata" => ["internal_id" => "XX123"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payments.update("PM123", params={
 "metadata": {"key": "value"}
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payments.update(
 "PM123",
 params: {
 metadata: { order_id: "transaction-0HE9WQ0WDE" }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.payments().update("PM123")
 .withMetadata("order_id", "transaction-0HE9WQ0WDE")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payment = await client.payments.update(
 "PM123",
 {
 metadata: {
 key: "value"
 }
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var paymentRequest = new GoCardless.Services.PaymentUpdateRequest()
{
 Metadata = new Dictionary<string, string>()
 {
 {"invoice_id", "INVOICE338"}
 }
};

var paymentResponse = await gocardless.Payments.UpdateAsync("PM0123", paymentRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 paymentUpdateParams := gocardless.PaymentUpdateParams{
 Metadata: map[string]interface{}{"key": "value"},
 }

 payment, err := client.Payments.Update(context, "PM123", paymentUpdateParams)

}

 Cancel a payment

Cancels the payment if it has not already been submitted to the banks. Any metadata supplied to this endpoint will be stored on the payment cancellation event it causes.

This will fail with a cancellation_failed error unless the payment’s status is pending_submission.

Relative endpoint: POST /payments/PM123/actions/cancel

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/payments/PM123/actions/cancel HTTP/1.1
Content-Type: application/json
{
 "data": {
 "metadata": {
 "ticket_id": "TK123"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payments": {
 "id": "PM123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "charge_date": "2014-05-21",
 "amount": 100,
 "description": null,
 "currency": "GBP",
 "status": "cancelled",
 "reference": "WINEBOX001",
 "metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "amount_refunded": 0,
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.1234567890"
 },
 "links": {
 "mandate": "MD123",
 "creditor": "CR123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payments()->cancel("PM123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payments.cancel("PM123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payments.cancel("PM123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.payments().cancel("PM123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const paymentResponse = await client.payments.cancel("PM123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var paymentResponse = await gocardless.Payments.CancelAsync("PM0123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 paymentCancelParams := gocardless.PaymentCancelParams{}
 payment, err := client.Payments.Cancel(context, "PM123", paymentCancelParams)

}

 Retry a payment

Retries a failed payment if the underlying mandate is active. You will receive a resubmission_requested webhook, but after that retrying the payment follows the same process as its initial creation, so you will receive a submitted webhook, followed by a confirmed or failed event. Any metadata supplied to this endpoint will be stored against the payment submission event it causes.

This will return a retry_failed error if the payment has not failed.

Payments can be retried up to 3 times.

Relative endpoint: POST /payments/PM123/actions/retry

Parameters

	charge_date
	A future date on which the payment should be collected. If not specified, the payment will be collected as soon as possible. If the value is before the mandate’s next_possible_charge_date creation will fail. If the value is not a working day it will be rolled forwards to the next available one.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/payments/PM123/actions/retry HTTP/1.1
Content-Type: application/json
{
 "data": {
 "metadata": {
 "reason": "Customer request"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payments": {
 "id": "PM123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "charge_date": "2014-05-21",
 "amount": 100,
 "description": null,
 "currency": "GBP",
 "status": "submitted",
 "reference": "WINEBOX001",
 "metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "amount_refunded": 0,
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.1234567890"
 },
 "links": {
 "mandate": "MD123",
 "creditor": "CR123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payments()->retry("PM123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payments.retry("PM123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payments.retry("PM123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.payments().retry("PM123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const paymentResponse = await client.payments.retry("PM123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var paymentResponse = await gocardless.Payments.RetryAsync("PM0123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 paymentRetryParams := gocardless.PaymentRetryParams{}
 payment, err := client.Payments.Retry(context, "PM123", paymentRetryParams)

}

 Payouts

Payouts represent transfers from GoCardless to a creditor. Each payout contains the funds collected from one or many payments. All the payments in a payout will have been collected in the same currency. Payouts are created automatically after a payment has been successfully collected.

Properties

	id
	Unique identifier, beginning with “PO”.
	amount
	Amount in minor unit (e.g. pence in GBP, cents in EUR).
	arrival_date
	Date the payout is due to arrive in the creditor’s bank account.
One of:

 	
 yyyy-mm-dd: the payout has been paid and is due to arrive in the creditor’s bank
 account on this day

	
 null: the payout hasn’t been paid yet

	created_at
	Fixed timestamp, recording when this resource was created.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	deducted_fees
	Fees that have already been deducted from the payout amount in minor unit (e.g. pence in GBP, cents in EUR), inclusive of tax if applicable.

For each late_failure_settled or chargeback_settled action, we refund the transaction fees in a payout. This means that a payout can have a negative deducted_fees value.

This field is calculated as (GoCardless fees + app fees + surcharge fees) - (refunded fees)

If the merchant is invoiced for fees separately from the payout, then deducted_fees will be 0.
	fx[estimated_exchange_rate]
	Estimated rate that will be used in the foreign exchange of the amount into the fx_currency.
This will vary based on the prevailing market rate until the moment that it is paid out.
Present only before a resource is paid out. Has up to 10 decimal places.
	fx[exchange_rate]
	Rate used in the foreign exchange of the amount into the fx_currency.
Present only after a resource is paid out. Has up to 10 decimal places.
	fx[fx_amount]
	Amount that was paid out in the fx_currency after foreign exchange.
Present only after the resource has been paid out.
	fx[fx_currency]
	
ISO 4217 code for the currency in which amounts will be paid out (after foreign exchange). Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported. Present only if payouts will be (or were) made via foreign exchange.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters. Note: This should not be used for storing PII data.
	payout_type
	Whether a payout contains merchant revenue or partner fees.
	reference
	Reference which appears on the creditor’s bank statement.
	status
	One of:

 	
 pending: the payout has been created, but not yet sent to your bank or it is in the process of being exchanged through our FX provider.

	
 paid: the payout has been sent to the your bank. FX payouts will become paid after we emit the fx_rate_confirmed webhook.

	
 bounced: the payout bounced when sent, the payout can be retried.

	tax_currency
	
ISO 4217 code for the currency in which tax is paid out to the tax authorities of your tax jurisdiction. Currently “EUR”, “GBP”, for French or British merchants, this will be null if tax is not applicable beta

	links[creditor]
	ID of creditor who will receive this payout, i.e. the owner of the creditor_bank_account.
	links[creditor_bank_account]
	ID of bank account which this will be sent to.

 List payouts

Returns a cursor-paginated list of your payouts.

Relative endpoint: GET /payouts

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	creditor
	Unique identifier, beginning with “CR”.
	creditor_bank_account
	Unique identifier, beginning with “BA”.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	limit
	Number of records to return.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters. Note: This should not be used for storing PII data.
	payout_type
	Whether a payout contains merchant revenue or partner fees.
	reference
	Reference which appears on the creditor’s bank statement.
	status
	One of:

 	
 pending: the payout has been created, but not yet sent to your bank or it is in the process of being exchanged through our FX provider.

	
 paid: the payout has been sent to the your bank. FX payouts will become paid after we emit the fx_rate_confirmed webhook.

	
 bounced: the payout bounced when sent, the payout can be retried.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/payouts HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payouts": [{
 "id": "PO123",
 "amount": 1000,
 "arrival_date": "2014-06-27",
 "deducted_fees": 10,
 "currency": "GBP",
 "created_at": "2014-06-20T13:23:34.000Z",
 "payout_type": "merchant",
 "reference": "ref-1",
 "status": "pending",
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.11667"
 },
 "tax_currency": "GBP",
 "metadata":{ "key": "value" },
 "links": {
 "creditor_bank_account": "BA123",
 "creditor": "CR123"
 }
 }],
 "meta": {
 "cursors": {
 "after": null,
 "before": null
 },
 "limit": 50
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payouts()->list();

$client->payouts()->list([
 "params" => ["creditor" => "CR123"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payouts.list().records

client.payouts.list(params={"status": "pending"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payouts.list

@client.payouts.list(params: { creditor_bank_account: "BA123" })

@client.payouts.list.records.each { |payout| puts payout.inspect }

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (Payout payout : client.payouts().all().withStatus("pending").execute()) {
 System.out.println(payout.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payouts = await client.payouts.list();

// List all payouts with a given status.
await client.payouts.list({ status: "pending" });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var payoutRequest = new GoCardless.Services.PayoutListRequest()
{
 Currency = GoCardless.Services.PayoutListRequest.PayoutCurrency.EUR,
};

var payoutListResponse = gocardless.Payouts.All(payoutRequest);
foreach (GoCardless.Resources.Payout payout in payoutListResponse)
{
 Console.WriteLine(payout.Amount);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 payoutListParams := gocardless.PayoutListParams{}
 payoutListResult, err := client.Payouts.List(context, payoutListParams)
 for _, payout := range payoutListResult.Payouts {
 fmt.Println(payout.Amount)
 }

}

 Get a single payout

Retrieves the details of a single payout. For an example of how to reconcile the transactions in a payout, see this guide.

Relative endpoint: GET /payouts/PO123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/payouts/PO123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payouts": {
 "id": "PO123",
 "amount": 1000,
 "arrival_date": "2014-06-27",
 "deducted_fees": 10,
 "currency": "GBP",
 "created_at": "2014-06-20T13:23:34.000Z",
 "payout_type": "merchant",
 "reference": "ref-1",
 "status": "pending",
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.11667"
 },
 "tax_currency": "GBP",
 "metadata":{ "key": "value" },
 "links": {
 "creditor_bank_account": "BA123",
 "creditor": "CR123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payouts()->get("PO123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payouts.get("PO123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payouts.get("PO123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.payouts().get("PO123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payout = await client.payouts.find("PO123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var payoutResponse = await gocardless.Payouts.GetAsync("PO0123");
GoCardless.Resources.Payout payout = payoutResponse.Payout;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 payout, err := client.Payouts.Get(context, "PO123")

}

 Update a payout

Updates a payout object. This accepts only the metadata parameter.

Relative endpoint: PUT /payouts/PO123

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/payouts/PO123 HTTP/1.1
Content-Type: application/json
{
 "payouts": {
 "metadata": {
 "key": "value"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payouts": {
 "id": "PO123",
 "amount": 1000,
 "arrival_date": "2014-06-27",
 "deducted_fees": 10,
 "currency": "GBP",
 "created_at": "2014-06-20T13:23:34.000Z",
 "payout_type": "merchant",
 "reference": "ref-1",
 "status": "pending",
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.11667"
 },
 "tax_currency": "GBP",
 "metadata":{"key":"value"},
 "links": {
 "creditor_bank_account": "BA123",
 "creditor": "CR123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payouts()->update("PO123", [
 "params" => ["metadata" => ["key" => "value"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payouts.update("PO123", params={
 "metadata": {"key": "value"}
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payouts.update(
 "PO123",
 params: {
 metadata: { key: "value" }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.payouts().update("PO123")
 .withMetadata("key", "value")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payout = await client.payouts.update(
 "PO123",
 {
 metadata: {
 key: "value"
 }
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var payoutRequest = new GoCardless.Services.PayoutUpdateRequest()
{
 Metadata = new Dictionary<string, string>()
 {
 {"key", "value"}
 }
};

var payoutResponse = await gocardless.Payouts.UpdateAsync("PO123", payoutRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 payoutUpdateParams := gocardless.PayoutUpdateParams{
 Metadata: map[string]interface{}{"key": "value"},
 }

 payout, err := client.Payouts.Update(context, "PO123", payoutUpdateParams)

}

 Payout Items

When we collect a payment on your behalf, we add the money you’ve collected to your
GoCardless balance, minus any fees paid. Periodically (usually every working day),
we take any positive balance in your GoCardless account, and pay it out to your
nominated bank account.

Other actions in your GoCardless account can also affect your balance. For example,
if a customer charges back a payment, we’ll deduct the payment’s amount from your
balance, but add any fees you paid for that payment back to your balance.

The Payout Items API allows you to view, on a per-payout basis, the credit and debit
items that make up that payout’s amount. Payout items can only be retrieved for payouts
created in the last 6 months. Requests for older payouts will return an HTTP status
410 Gone.

Properties

	amount
	The positive (credit) or negative (debit) value of the item, in fractional currency;
the lowest denomination for the currency (e.g. pence in GBP, cents in EUR), to one decimal place.
For accuracy, we store some of our fees to greater precision than we can actually pay out (for example, a GoCardless fee we record might come to 0.5 pence, but it is not possible to send a payout via bank transfer including a half penny).

To calculate the final amount of the payout, we sum all of the items and then round to the nearest currency unit.

	taxes
	An array of tax items beta

 Note: VAT applies to transaction and surcharge fees for merchants operating in the UK and France.

 Each instance will contain these properties:

 	
 amount: The amount of tax applied to a fee in fractional currency; the lowest denomination for the currency (e.g. pence in GBP, cents in EUR), to one decimal place.

	
 currency: ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.

	
 destination_amount: The amount of tax to be paid out to the tax authorities in fractional currency; the lowest denomination for the currency (e.g. pence in GBP, cents in EUR), to one decimal place.

 When currency and destination_currency don’t match this will be null until the exchange_rate has been finalised.

	
 destination_currency: ISO 4217 code for the currency in which tax is paid out to the tax authorities of your tax jurisdiction. Currently “EUR” for French merchants and “GBP” for British merchants.

	
 exchange_rate: The exchange rate for the tax from the currency into the destination currency.

 Present only if the currency and the destination currency don’t match and the exchange rate has been finalised.

 You can listen for the payout’s tax_exchange_rates_confirmed webhook to know when the exchange rate has been finalised for all fees in the payout.

	
 tax_rate_id: The unique identifier created by the jurisdiction, tax type and version

	type
	The type of the credit (positive) or debit (negative) item in the payout (inclusive of VAT if applicable). One of:

 	
 payment_paid_out (credit)

	
 payment_failed (debit): The payment failed to be processed.

	
 payment_charged_back (debit): The payment has been charged back.

	
 payment_refunded (debit): The payment has been refunded to the customer.

	
 refund (debit): A refund sent to a customer, not linked to a payment.

	
 refund_funds_returned (credit): The refund could not be sent to the customer, and the funds have been returned to you.

	
 gocardless_fee (credit/debit): The fees that GoCardless charged for a payment. In the case of a payment failure or chargeback, these will appear as credits. Will include taxes if applicable for merchants.

	
 app_fee (credit/debit): The optional fees that a partner may have taken for a payment. In the case of a payment failure or chargeback, these will appear as credits.

	
 revenue_share (credit/debit): A share of the fees that GoCardless collected which some partner integrations receive when their users take payments. Only shown in partner payouts. In the case of a payment failure or chargeback, these will appear as credits.

	
 surcharge_fee (credit/debit): GoCardless deducted a surcharge fee as the payment failed or was charged back, or refunded a surcharge fee as the bank or customer cancelled the chargeback. Will include taxes if applicable for merchants.

	links[mandate]
	Unique identifier, beginning with “MD”. Note that this prefix may not apply to mandates created before 2016. Present only for the items of type payment_refunded, refund and refund_funds_returned.
	links[payment]
	Unique identifier, beginning with “PM”.
	links[refund]
	Unique identifier, beginning with “RF”. Present only for the items of type payment_refunded, refund and refund_funds_returned.

 Get all payout items in a single payout

Returns a cursor-paginated list of items in the payout.

This endpoint only serves requests for payouts created in the last 6 months. Requests for older payouts will return an HTTP status 410 Gone.

Relative endpoint: GET /payout_items

Parameters

	payout
	
required Unique identifier, beginning with “PO”.
	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	include_2020_tax_cutover
	Boolean value indicating whether the API should return tax data for the cutover period of April to August 2020. Defaults to false.
	limit
	Number of records to return.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/payout_items?payout=PO123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "payout_items": [
 {
 "amount": "4.0",
 "type": "gocardless_fee",
 "taxes": [{
 "amount": "1.0",
 "currency": "GBP",
 "destination_amount": "1.1",
 "destination_currency": "EUR",
 "exchange_rate": "1.11205",
 "tax_rate_id": "FR_VAT_1"
 }],
 "links": {
 "payment": "PM456"
 }
 },
 {
 "amount": "1000.0",
 "type": "payment_paid_out",
 "taxes": [],
 "links": {
 "payment": "PM123"
 }
 },
 {
 "amount": "-24.0",
 "type": "gocardless_fee",
 "taxes": [{
 "amount": "4.0",
 "currency": "EUR",
 "destination_amount": "4.0",
 "destination_currency": "EUR",
 "exchange_rate": null,
 "tax_rate_id": "FR_VAT_1",
 }],
 "links": {
 "payment": "PM123"
 }
 },
 {
 "amount": "30.0",
 "type": "payment_paid_out",
 "taxes": [],
 "links": {
 "payment": "PM456"
 }
 },
 {
 "amount": "-500.0",
 "type": "payment_refunded",
 "taxes": [],
 "links": {
 "payment": "PM789"
 }
 },
 {
 "amount": "4.0",
 "type": "gocardless_fee",
 "taxes": [{
 "amount": "1.0",
 "currency": "GBP",
 "destination_amount": "1.1",
 "destination_currency": "EUR",
 "exchange_rate": "1.11205",
 "tax_rate_id": "FR_VAT_1"
 }],
 "links": {
 "payment": "PM456"
 }
 },
 {
 "amount": "-1.0",
 "type": "app_fee",
 "taxes": [],
 "links": {
 "payment": "PM456"
 }
 },
],
 "meta": {
 "cursors": { "before": null, "after": null },
 "limit": 50
 }
}

GET https://api.gocardless.com/payout_items?payout=PO456 HTTP/1.1

HTTP/1.1 410 Gone
Content-Type: application/json
{
 "error": {
 "documentation_url": "https://developer.gocardless.com/api-reference#payout_items_data_archived",
 "message": "Payout items for payouts created more than 6 months ago are archived. Please contact support if you require access to this data.",
 "type": "invalid_api_usage",
 "errors": [
 {
 "reason": "payout_items_data_archived",
 "message": "Payout items for payouts created more than 6 months ago are archived. Please contact support if you require access to this data."
 }
],
 "code": 410,
 "request_id": "deadbeef-0000-4000-0000-444400004444"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->payoutItems()->list([
 'params' => ['payout' => 'PO123']
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.payout_items.list(params={'payout': 'PO123'})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.payout_items.list(params: {payout: "PO123"})

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.payoutItems().all().withPayout("PO123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const payoutItems = await client.payoutItems.list({ payout: "P0123" });

// List the first three payout items for a payout
const payoutItems = await client.payoutItems.list({ payout: "P0123", limit: 3 });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var itemsRequest = new GoCardless.Services.PayoutItemsListRequest()
{
 Payout = "PO123"
};

var response = gocardless.PayoutItems.All(payoutRequest);
foreach (GoCardless.Resources.PayoutItem item in response)
{
 Console.WriteLine(item.Amount);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 payoutItemsListParams := gocardless.PayoutItemListParams{
 Payout: "PO123",
 }

 payoutItemsListResult, err := client.PayoutItems.List(context, payoutItemsListParams)
 for _, payoutItem := payoutItemsListResult.PayoutItems {
 fmt.Println(payoutItem.Amount)
 }

}

 Redirect Flows

Deprecated: Redirect Flows are legacy APIs and cannot be used by new integrators.
 The Billing Request flow API should be used for your payment flows.

Redirect flows enable you to use GoCardless’ hosted payment pages to set up mandates with your customers. These pages are fully compliant and have been translated into Danish, Dutch, French, German, Italian, Norwegian, Portuguese, Slovak, Spanish and Swedish.

The overall flow is:

	
 You create a redirect flow for your customer, and redirect them to the returned redirect url, e.g. https://pay.gocardless.com/flow/RE123.

	
 Your customer supplies their name, email, address, and bank account details, and submits the form. This securely stores their details, and redirects them back to your success_redirect_url with redirect_flow_id=RE123 in the querystring.

	
 You complete the redirect flow, which creates a customer, customer bank account, and mandate, and returns the ID of the mandate. You may wish to create a subscription or payment at this point.

Once you have completed the redirect flow via the API, you should display a confirmation page to your customer, confirming that their Direct Debit has been set up. You can build your own page, or redirect to the one we provide in the confirmation_url attribute of the redirect flow.

Redirect flows expire 30 minutes after they are first created. You cannot complete an expired redirect flow. For an integrator this is shorter and they will expire after 10 minutes.

Properties

	id
	Unique identifier, beginning with “RE”.
	confirmation_url
	The URL of a confirmation page, which you may optionally redirect the customer to rather than use your own page, that confirms in their chosen language that their Direct Debit has been set up successfully. Only returned once the customer has set up their mandate via the payment pages and the redirect flow has been completed, and only available for 15 minutes from when you complete the redirect flow. The structure of this URL may change at any time, so you should read it directly from the API response.
	created_at
	Fixed timestamp, recording when this resource was created.
	description
	A description of the item the customer is paying for. This will be shown on the hosted payment pages.
	mandate_reference
	Mandate reference generated by GoCardless or submitted by an integrator.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters. Note: This should not be used for storing PII data.
	redirect_url
	The URL of the hosted payment pages for this redirect flow. This is the URL you should redirect your customer to.
	scheme
	The Direct Debit scheme of the mandate. If specified, the payment pages will only allow the set-up of a mandate for the specified scheme. It is recommended that you leave this blank so the most appropriate scheme is picked based on the customer’s bank account.
	session_token
	The customer’s session ID must be provided when the redirect flow is set up and again when it is completed. This allows integrators to ensure that the user who was originally sent to the GoCardless payment pages is the one who has completed them.
	success_redirect_url
	The URL to redirect to upon successful mandate setup. You must use a URL beginning https in the live environment.
	links[billing_request]
	ID of billing request that a redirect flow can create.
Note: The redirect flow will only create a billing request in the event the redirect flow is eligible to send the payer down this new and improved flow
	links[creditor]
	The creditor for whom the mandate will be created. The name of the creditor will be displayed on the payment page.
	links[customer]
	ID of customer created by this redirect flow.
Note: this property will not be present until the redirect flow has been successfully completed.
	links[customer_bank_account]
	ID of customer bank account created by this redirect flow.
Note: this property will not be present until the redirect flow has been successfully completed.
	links[mandate]
	ID of mandate created by this redirect flow.
Note: this property will not be present until the redirect flow has been successfully completed.

 Create a redirect flow

Creates a redirect flow object which can then be used to redirect your customer to the GoCardless hosted payment pages.

Relative endpoint: POST /redirect_flows

Deprecated: Redirect Flows are legacy APIs and cannot be used by new integrators.
The Billing Request flow API should be used for your payment flows.

Parameters

	session_token
	
required The customer’s session ID must be provided when the redirect flow is set up and again when it is completed. This allows integrators to ensure that the user who was originally sent to the GoCardless payment pages is the one who has completed them.
	success_redirect_url
	
required The URL to redirect to upon successful mandate setup. You must use a URL beginning https in the live environment.
	description
	A description of the item the customer is paying for. This will be shown on the hosted payment pages.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters. Note: This should not be used for storing PII data.
	prefilled_bank_account[account_type]
	Bank account type for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	prefilled_customer[address_line1]
	The first line of the customer’s address.
	prefilled_customer[address_line2]
	The second line of the customer’s address.
	prefilled_customer[address_line3]
	The third line of the customer’s address.
	prefilled_customer[city]
	The city of the customer’s address.
	prefilled_customer[company_name]
	Customer’s company name. Company name should only be provided if given_name and family_name are null.
	prefilled_customer[country_code]
	ISO 3166-1 alpha-2 code.
	prefilled_customer[danish_identity_number]
	For Danish customers only. The civic/company number (CPR or CVR) of the customer.
	prefilled_customer[email]
	Customer’s email address.
	prefilled_customer[family_name]
	Customer’s surname.
	prefilled_customer[given_name]
	Customer’s first name.
	prefilled_customer[language]
	
ISO 639-1 code.
	prefilled_customer[phone_number]
	For New Zealand customers only.
	prefilled_customer[postal_code]
	The customer’s postal code.
	prefilled_customer[region]
	The customer’s address region, county or department.
	prefilled_customer[swedish_identity_number]
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer.
	scheme
	The Direct Debit scheme of the mandate. If specified, the payment pages will only allow the set-up of a mandate for the specified scheme. It is recommended that you leave this blank so the most appropriate scheme is picked based on the customer’s bank account.
	links[creditor]
	The creditor for whom the mandate will be created. The name of the creditor will be displayed on the payment page. Required if your account manages multiple creditors.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/redirect_flows HTTP/1.1
Content-Type: application/json
{
 "redirect_flows": {
 "description": "Wine boxes",
 "session_token": "SESS_wSs0uGYMISxzqOBq",
 "success_redirect_url": "https://example.com/pay/confirm",
 "prefilled_customer": {
 "given_name": "Frank",
 "family_name": "Osborne",
 "email": "frank.osborne@acmeplc.com"
 },
 "links": {
 "creditor": "CR123"
 }
 }
}

HTTP/1.1 201 Created
Location: /redirect_flows/RE123
Content-Type: application/json
{
 "redirect_flows": {
 "id": "RE123",
 "description": "Wine boxes",
 "session_token": "SESS_wSs0uGYMISxzqOBq",
 "scheme": null,
 "success_redirect_url": "https://example.com/pay/confirm",
 "redirect_url": "http://pay.gocardless.com/flow/RE123",
 "created_at": "2014-10-22T13:10:06.000Z",
 "links": {
 "creditor": "CR123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->redirectFlows()->create([
 "params" => ["description" => "Wine boxes",
 "session_token" => "SESS_wSs0uGYMISxzqOBq",
 "success_redirect_url" => "https://example.com/pay/confirm",
 "prefilled_customer" => [
 "given_name" => "Frank",
 "family_name" => "Osborne",
 "email" => "frank.osborne@acmeplc.com"
]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.redirect_flows.create(params={
 "description": "Wine boxes",
 "session_token": "SESS_wSs0uGYMISxzqOBq",
 "success_redirect_url": "https://example.com/pay/confirm",
 "prefilled_customer": {
 "given_name": "Frank",
 "family_name": "Osborne",
 "email": "frank.osborne@acmeplc.com"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.redirect_flows.create(
 params: {
 description: "Team membership",
 session_token: "my_unique_tracking_id",
 success_redirect_url: "https://example.com/pay/confirm",
 prefilled_customer: {
 given_name: "Frank",
 family_name: "Osborne",
 email: "frank.osborne@acmeplc.com"
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

RedirectFlow redirectFlow = client.redirectFlows().create()
 .withDescription("Wine boxes")
 .withSessionToken("SESS_wSs0uGYMISxzqOBq")
 .withSuccessRedirectUrl("https://example.com/pay/confirm")
 .withPrefilledCustomerGivenName("Frank")
 .withPrefilledCustomerFamilyName("Osborne")
 .withPrefilledCustomerEmail("frank.osborne@acmeplc.com")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const redirectFlow = await client.redirectFlows.create({
 description: "Wine boxes",
 session_token: "SESS_wSs0uGYMISxzqOBq",
 success_redirect_url: "https://example.com/pay/confirm",
 prefilled_customer: {
 given_name: "Frank",
 family_name: "Osborne",
 email: "frank.osborne@acmeplc.com"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var prefilledCustomer = new GoCardless.Services.RedirectFlowCreateRequest.RedirectFlowPrefilledCustomer()
{
 AddressLine1 = "338 Goswell Road",
 Email = "api@gocardless.com",
 GivenName = "Bobby",
 FamilyName = "Tables"
};

var redirectFlowRequest = new GoCardless.Services.RedirectFlowCreateRequest()
{
 Description = "Gold package",
 SessionToken = "SESS_wSs0uGYMISxzqOBq",
 SuccessRedirectUrl = "https://example.com/pay/confirm",
 PrefilledCustomer = prefilledCustomer
};

var redirectFlowResponse = await gocardless.RedirectFlows.CreateAsync(redirectFlowRequest);
GoCardless.Resources.RedirectFlow redirectFlow = redirectFlowResponse.RedirectFlow;

Console.WriteLine(redirectFlow.RedirectUrl);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 redirectFlowCreateParams := gocardless.RedirectFlowCreateParams{
 Description: "Cider Barrels",
 Links: &gocardless.RedirectFlowCreateParamsLinks{
 Creditor: "CR00006A7FRJA5",
 },
 PrefilledCustomer: &gocardless.RedirectFlowCreateParamsPrefilledCustomer{
 AddressLine1: "338-346 Goswell Road",
 City: "London",
 GivenName: "Tim",
 FamilyName: "Rogers",
 Email: "tim@gocardless.com",
 PostalCode: "EC1V 7LQ",
 },
 Scheme: "bacs",
 SessionToken: "dummy_session_token",
 SuccessRedirectUrl: "https://developer.gocardless.com/example-redirect-uri/",
 }

 redirectFlow, err := client.RedirectFlows.Create(ctx, redirectFlowCreateParams)

}

 Get a single redirect flow

Returns all details about a single redirect flow

Relative endpoint: GET /redirect_flows/RE123456

Deprecated: Redirect Flows are legacy APIs and cannot be used by new integrators.
The Billing Request flow API should be used for your payment flows.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/redirect_flows/RE123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "redirect_flows": {
 "id": "RE123",
 "description": "Wine boxes",
 "session_token": "SESS_wSs0uGYMISxzqOBq",
 "scheme": null,
 "success_redirect_url": "https://example.com/pay/confirm",
 "redirect_url": "http://pay.gocardless.com/flow/RE123",
 "created_at": "2014-10-22T13:10:06.000Z",
 "links": {
 "creditor": "CR123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->redirectFlows()->get("RE123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.redirect_flows.get("RE123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.redirect_flows.get("RE123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

RedirectFlow redirectFlow = client.redirectFlows.get("RE123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const redirectFlow = await client.redirectFlows.find("RE123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var redirectFlowResponse = await gocardless.RedirectFlows.GetAsync("RE123");
GoCardless.Resources.RedirectFlow redirectFlow = redirectFlowResponse.RedirectFlow;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 redirectFlow, err := client.RedirectFlows.Get(context, "RE123")

}

 Complete a redirect flow

This creates a customer, customer bank account, and mandate using the details supplied by your customer and returns the ID of the created mandate.

This will return a redirect_flow_incomplete error if your customer has not yet been redirected back to your site, and a redirect_flow_already_completed error if your integration has already completed this flow. It will return a bad_request error if the session_token differs to the one supplied when the redirect flow was created.

Relative endpoint: POST /redirect_flows/RE123456/actions/complete

Deprecated: Redirect Flows are legacy APIs and cannot be used by new integrators.
The Billing Request flow API should be used for your payment flows.

Parameters

	session_token
	
required The customer’s session ID must be provided when the redirect flow is set up and again when it is completed. This allows integrators to ensure that the user who was originally sent to the GoCardless payment pages is the one who has completed them.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/redirect_flows/RE123/actions/complete HTTP/1.1
Content-Type: application/json
{
 "data": {
 "session_token": "SESS_wSs0uGYMISxzqOBq"
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "redirect_flows": {
 "id": "RE123",
 "description": "Wine boxes",
 "session_token": "SESS_wSs0uGYMISxzqOBq",
 "scheme": null,
 "success_redirect_url": "https://example.com/pay/confirm",
 "confirmation_url": "https://pay.gocardless.com/flow/RE123/success"
 "created_at": "2014-10-22T13:10:06.000Z",
 "mandate_reference": "AB1YZ"
 "links": {
 "creditor": "CR123",
 "mandate": "MD123",
 "customer": "CU123",
 "customer_bank_account": "BA123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->redirectFlows()->complete("RE123", [
 "params" => ["session_token" => "SESS_wSs0uGYMISxzqOBq"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.redirect_flows.complete("RE123", params={
 "session_token": "SESS_wSs0uGYMISxzqOBq"
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.redirect_flows.complete(
 "RE123",
 params: {
 session_token: "my_unique_tracking_id"
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.redirectFlows().complete("RE123")
 .withSessionToken("SESS_wSs0uGYMISxzqOBq")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const redirectFlowResponse = await client.redirectFlows.complete(
 "RE123",
 {
 session_token: "SESS_wSs0uGYMISxzqOBq"
 }
)

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var redirectFlowRequest = new GoCardless.Services.RedirectFlowCompleteRequest()
{
 SessionToken = "SESS_wSs0uGYMISxzqOBq"
};

var redirectFlowResponse = await gocardless.RedirectFlows.CompleteAsync("RE123", redirectFlowRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 redirectFlowCompleteParams := gocardless.RedirectFlowCompleteParams{
 SessionToken: "dummy_session_token",
 }

 redirectFlow, err := client.RedirectFlows.Complete(ctx, "RE0003QNP5DE2101R80QZHJ2X12P93Q4", redirectFlowCompleteParams)

}

 Refunds

Refund objects represent (partial) refunds of a payment back to the customer.

GoCardless will notify you via a webhook whenever a refund is created, and will update the amount_refunded property of the payment.

Properties

	id
	Unique identifier, beginning with “RF”.
	amount
	Amount in minor unit (e.g. pence in GBP, cents in EUR).
	created_at
	Fixed timestamp, recording when this resource was created.
	currency
	
ISO 4217 currency code. This is set to the currency of the refund’s payment.
	fx[estimated_exchange_rate]
	Estimated rate that will be used in the foreign exchange of the amount into the fx_currency.
This will vary based on the prevailing market rate until the moment that it is paid out.
Present only before a resource is paid out. Has up to 10 decimal places.
	fx[exchange_rate]
	Rate used in the foreign exchange of the amount into the fx_currency.
Present only after a resource is paid out. Has up to 10 decimal places.
	fx[fx_amount]
	Amount that was paid out in the fx_currency after foreign exchange.
Present only after the resource has been paid out.
	fx[fx_currency]
	
ISO 4217 code for the currency in which amounts will be paid out (after foreign exchange). Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported. Present only if payouts will be (or were) made via foreign exchange.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	reference
	An optional reference that will appear on your customer’s bank statement. The character limit for this reference is dependent on the scheme.
 ACH - 10 characters
 Autogiro - 11 characters
 Bacs - 10 characters
 BECS - 30 characters
 BECS NZ - 12 characters
 Betalingsservice - 30 characters
 Faster Payments - 18 characters
 PAD - scheme doesn’t offer references
 PayTo - 18 characters
 SEPA - 140 characters
 Note that this reference must be unique (for each merchant) for the BECS scheme as it is a scheme requirement. Restricted: You can only specify a payment reference for Bacs payments (that is, when collecting from the UK) if you’re on the GoCardless Plus, Pro or Enterprise packages. Restricted: You can not specify a payment reference for Faster Payments.

	status
	One of:

 	
 created: the refund has been created

	
 pending_submission: the refund has been created, but not yet submitted to the banks

	
 submitted: the refund has been submitted to the banks

	
 paid: the refund has been included in a payout

	
 cancelled: the refund has been cancelled

	
 bounced: the refund has failed to be paid

	
 funds_returned: the refund has had its funds returned

	links[mandate]
	ID of the mandate against which the refund is being made.
	links[payment]
	ID of the payment against which the refund is being made.

 Create a refund

Creates a new refund object.

This fails with:

	
 total_amount_confirmation_invalid if the confirmation amount doesn’t match the total amount refunded for the payment. This safeguard is there to prevent two processes from creating refunds without awareness of each other.

	
 number_of_refunds_exceeded if five or more refunds have already been created against the payment.

	
 available_refund_amount_insufficient if the creditor does not have sufficient balance for refunds available to cover the cost of the requested refund.

Relative endpoint: POST /refunds

Restricted: This endpoint is disabled by default. You can contact us to request that we enable this for you.

Warning: A payment that has been (partially) refunded can still receive a late failure or chargeback from the customer’s bank.

A refund can only be created once it is outside the safer refund period (7 calendar days after the charge date) otherwise an error is returned. The safer refund period can be disabled by contacting GoCardless.

Parameters

	amount
	
required Amount in minor unit (e.g. pence in GBP, cents in EUR).
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	reference
	An optional reference that will appear on your customer’s bank statement. The character limit for this reference is dependent on the scheme.
 ACH - 10 characters
 Autogiro - 11 characters
 Bacs - 10 characters
 BECS - 30 characters
 BECS NZ - 12 characters
 Betalingsservice - 30 characters
 Faster Payments - 18 characters
 PAD - scheme doesn’t offer references
 PayTo - 18 characters
 SEPA - 140 characters
 Note that this reference must be unique (for each merchant) for the BECS scheme as it is a scheme requirement. Restricted: You can only specify a payment reference for Bacs payments (that is, when collecting from the UK) if you’re on the GoCardless Plus, Pro or Enterprise packages. Restricted: You can not specify a payment reference for Faster Payments.

	total_amount_confirmation
	Total expected refunded amount in minor unit (e.g. pence/cents/öre). If there are
other partial refunds against this payment, this value should be the sum of the
existing refunds plus the amount of the refund being created.

Must be supplied if links[payment] is present.
	links[mandate]
	ID of the mandate against which the refund is being made.
 Restricted: You must request access to Mandate Refunds by contacting our support team.

	links[payment]
	ID of the payment against which the refund is being made.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/refunds HTTP/1.1
Content-Type: application/json
{
 "refunds": {
 "amount": 100,
 "total_amount_confirmation": 150,
 "reference": "Acme refund",
 "metadata": {
 "reason": "late delivery"
 },
 "links": {
 "payment": "PM123"
 }
 }
}

HTTP/1.1 201 Created
Location: /payments/RF123
Content-Type: application/json
{
 "refunds": {
 "id": "RF123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "amount": 100,
 "currency": "GBP",
 "reference": "Acme refund",
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.1234567890"
 },
 "metadata": {
 "reason": "late delivery"
 },
 "links": {
 "payment": "PM123"
 }
 }
}

// Or, if the creditor does not have a sufficient balance to create the refund:
HTTP/1.1 422 Validation Failed
Content-Type: application/json
{
 "error": {
 "message": "It’s not possible to process this refund because you don’t have enough funds in GBP. Your available refund amount for payments in GBP is: 0.9 GBP",
 "errors": [
 {
 "reason": "available_refund_amount_insufficient",
 "message": "It’s not possible to process this refund because you don’t have enough funds in GBP. Your available refund amount for payments in GBP is: 0.9 GBP",
 "metadata": {
 "available_refund_amount": 90
 }
 }
],
 "documentation_url": "https://developer.gocardless.com/api-reference#available_refund_amount_insufficient",
 "type": "validation_failed",
 "request_id": "...",
 "code": 422
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->refunds()->create([
 "params" => ["amount" => 100,
 "total_amount_confirmation" => 150,
 "reference" => "Acme refund",
 "metadata" => ["reason" => "Late delivery"],
 "links" => ["payment" => "PM123"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.refunds.create(params={
 "amount": 100,
 "total_amount_confirmation": 150,
 "reference": "Acme refund",
 "metadata": {
 "reason": "late delivery"
 },
 "links": {
 "payment": "PM123"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.refunds.create(
 params: {
 amount: 100,
 total_amount_confirmation: 150,
 reference: "Service refund",
 metadata: { reason: "Late delivery" },
 links: { payment: "PM123"}
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.refunds().create()
 .withAmount(100)
 .withTotalAmountConfirmation(150)
 .withReference("Acme refund")
 .withMetadata("reason", "late delivery")
 .withLinksPayment("PM123")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const refund = await client.refunds.create({
 amount: 100,
 total_amount_confirmation: 150,
 reference: "Acme refund",
 metadata: {
 reason: "late delivery"
 },
 links: {
 payment: "PM123"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var refundRequest = new GoCardless.Services.RefundCreateRequest()
{
 Amount = 100,
 TotalAmountConfirmation = 150,
 Reference = "Partial refund",
 Links = new GoCardless.Services.RefundCreateRequest.RefundLinks()
 {
 Payment = "PM0123"
 }
};
var refundResponse = await gocardless.Refunds.CreateAsync(refundRequest);
GoCardless.Resources.Refund refund = refundResponse.Refund;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 refundCreateParams := gocardless.RefundCreateParams{
 Amount: 100,
 TotalAmountConfirmation: 150,
 Reference: "Acme refund",
 Metadata: map[string]interface{}{"reason": "late delivery"},
 Links: gocardless.RefundCreateParamsLinks{
 Payment: "PM123",
 },
 }

 refund, err := client.Refunds.Create(context, refundCreateParams)

}

 List refunds

Returns a cursor-paginated list of your refunds.

Relative endpoint: GET /refunds

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	limit
	Number of records to return.
	mandate
	Unique identifier, beginning with “MD”. Note that this prefix may not apply to mandates created before 2016.
	payment
	Unique identifier, beginning with “PM”.
	refund_type
	Whether a refund was issued against a mandate or a payment. One of:

 	
 payment: default returns refunds created against payments only

	
 mandate: returns refunds created against mandates only

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/refunds HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 },
 "refunds": [{
 "id": "RF123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "amount": 100,
 "currency": "GBP",
 "reference": "Acme refund",
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.1234567890"
 },
 "metadata": {
 "reason": "late failure"
 },
 "links": {
 "payment": "PM123"
 }
 }]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->refunds()->list();

$client->refunds()->list([
 "params" => ["payment" => "PM123"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.refunds.list().records

client.refunds.list(params={"payment": "PM123"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.refunds.list

@client.refunds.list(params: { payment: "PM123" })

@client.refunds.list.records.each { |refund| puts refund.inspect }

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (Refund refund : client.refunds().all().withPayment("PM123").execute()) {
 System.out.println(refund.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const refunds = await client.refunds.list();

// List all refunds associated with a given mandate.
const refunds = await client.refunds.list({ mandate: "MD0123" });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var refundRequest = new GoCardless.Services.RefundListRequest()
{
 Mandate = "MD0123"
};

var refundListResponse = gocardless.Refunds.All(refundRequest);
foreach (GoCardless.Resources.Refund refund in refundListResponse)
{
 Console.WriteLine(refund.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 refundListParams := gocardless.RefundListParams{
 Mandate: "MD123",
 }
 refundListResult, err := client.Refunds.List(context, refundListParams)
 for _, refund := refundListResult.Refunds {
 fmt.Println(refund.Id)
 }

}

 Get a single refund

Retrieves all details for a single refund

Relative endpoint: GET /refunds/RF123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/refunds/RF123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "refunds": {
 "id": "RF123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "amount": 100,
 "currency": "GBP",
 "reference": "Acme refund",
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.1234567890"
 },
 "metadata": {
 "reason": "late failure"
 },
 "links": {
 "payment": "PM123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->refunds()->get("RF123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.refunds.get("RF123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.refunds.get("RF123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Refund refund = client.refunds().get("RF123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const refund = await client.refunds.find("RF123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var refundResponse = await gocardless.Refunds.GetAsync("RF0123");
GoCardless.Resources.Refund refund = refundResponse.Refund;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 refund, err := client.Refunds.Get(context, "RF123")

}

 Update a refund

Updates a refund object.

Relative endpoint: PUT /refunds/RF123

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/refunds/RF123 HTTP/1.1
Content-Type: application/json
{
 "refunds": {
 "metadata": {
 "key": "value"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "refunds": {
 "id": "RF123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "amount": 100,
 "currency": "GBP",
 "reference": "Acme refund",
 "fx": {
 "fx_currency": "EUR",
 "fx_amount": null,
 "exchange_rate": null,
 "estimated_exchange_rate": "1.1234567890"
 },
 "metadata": {
 "key": "value"
 },
 "links": {
 "payment": "PM123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->refunds()->update("RF123", [
 "params" => ["metadata" => ["key" => "value"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.refunds.update("RF123", params={
 "metadata": {"key": "value"}
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.refunds.update(
 "RF123",
 params: {
 metadata: { reason: "Late delivery", internal_code: "refund_1A" }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.refunds().update("RF123")
 .withMetadata("internal_code", "refund_1A")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const refund = await client.refunds.update(
 "RF123",
 {
 metadata: {
 key: "value"
 }
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var refundRequest = new GoCardless.Services.RefundUpdateRequest()
{
 Metadata = new Dictionary<string, string>()
 {
 {"reason", "Late delivery"}
 }
};

var refundResponse = await gocardless.Refunds.UpdateAsync("RF0123", refundRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 refundUpdateParams := gocardless.RefundUpdateParams{
 Metadata: map[string]interface{}{"key": "value"}
 }
 refund, err := client.Refunds.Update(context, "RF123", refundUpdateParams)

}

 Scenario Simulators

Scenario Simulators allow you to manually trigger and test certain paths that your
integration will encounter in the real world. These endpoints are only active in the
sandbox environment.

Properties

	id
	The unique identifier of the simulator, used to initiate simulations. One of:

 	
 creditor_verification_status_action_required: Sets a creditor’s verification status to action required, meaning that the creditor must provide further information to GoCardless in order to verify their account to receive payouts.

	
 creditor_verification_status_in_review: Sets a creditor’s verification status to in review, meaning that the creditor has provided all of the information requested by GoCardless to verify their account, and is now awaiting review.

	
 creditor_verification_status_successful: Sets a creditor’s verification status to successful, meaning that the creditor is fully verified and can receive payouts.

	
 payment_confirmed: Transitions a payment through to confirmed. It must start in the pending_submission state, and its mandate must be in the activated state (unless it is a payment for ACH, BECS, BECS_NZ or SEPA, in which cases the mandate may be pending_submission, since their mandates are submitted with their first payment).

	
 payment_paid_out: Transitions a payment through to paid_out, having been collected successfully and paid out to you. It must start in the pending_submission state, and its mandate must be in the activated state (unless it is a payment for ACH, BECS, BECS_NZ or SEPA, in which cases the mandate may be pending_submission, since their mandates are submitted with their first payment).

	
 payment_failed: Transitions a payment through to failed. It must start in the pending_submission state, and its mandate must be in the activated state (unless it is a payment for ACH, BECS, BECS_NZ or SEPA, in which cases the mandate may be pending_submission, since their mandates are submitted with their first payment).

	
 payment_charged_back: Behaves the same as the payout_paid_out simulator, except that the payment is transitioned to charged_back after it is paid out, having been charged back by the customer.

	
 payment_chargeback_settled: Behaves the same as the payment_charged_back simulator, except that the charged back payment is additionally included as a debit item in a payout, thereby settling the charged back payment.

	
 payment_late_failure: Transitions a payment through to late_failure, having been apparently collected successfully beforehand. It must start in the pending_submission state, and its mandate must be in the activated state (unless it is a payment for ACH, BECS, BECS_NZ or SEPA, in which cases the mandate may be pending_submission, since their mandates are submitted with their first payment). Not compatible with Autogiro mandates.

	
 payment_late_failure_settled: Behaves the same as the payment_late_failure simulator, except that the late failure is additionally included as a debit item in a payout, thereby settling the late failure.

	
 payment_submitted: Transitions a payment to submitted, without proceeding any further. It must start in the pending_submission state.

	
 mandate_activated: Transitions a mandate through to activated, having been submitted to the banks and set up successfully. It must start in the pending_submission state. Not compatible with ACH, BECS, BECS_NZ and SEPA mandates, which are submitted and activated with their first payment.

	
 mandate_customer_approval_granted: Transitions a mandate through to pending_submission, as if the customer approved the mandate creation. It must start in the pending_customer_approval state. Compatible only with Bacs and SEPA mandates, which support customer signatures on the mandate. All payments associated with the mandate will be transitioned to pending_submission. All subscriptions associated with the mandate will become active.

	
 mandate_customer_approval_skipped: Transitions a mandate through to pending_submission, as if the customer skipped the mandate approval during the mandate creation process. It must start in the pending_customer_approval state. Compatible only with Bacs and SEPA mandates, which support customer signatures on the mandate. All payments associated with the mandate will be transitioned to pending_submission. All subscriptions associated with the mandate will become active.

	
 mandate_failed: Transitions a mandate through to failed, having been submitted to the banks but found to be invalid (for example due to invalid bank details). It must start in the pending_submission or submitted states. Not compatible with SEPA mandates, which are submitted with their first payment.

	
 mandate_expired: Transitions a mandate through to expired, having been submitted to the banks, set up successfully and then expired because no collection attempts were made against it for longer than the scheme’s dormancy period (13 months for Bacs, 3 years for SEPA, 15 months for ACH, Betalingsservice, and BECS). It must start in the pending_submission state. Not compatible with Autogiro, BECS NZ, and PAD mandates, which do not expire.

	
 mandate_transferred: Transitions a mandate through to transferred, having been submitted to the banks, set up successfully and then moved to a new bank account due to the customer using the UK’s Current Account Switching Service (CASS). It must start in the pending_submission state. Only compatible with Bacs mandates.

	
 mandate_transferred_with_resubmission: Transitions a mandate through transferred and resubmits it to the banks, can be caused be the UK’s Current Account Switching Service (CASS) or when a customer contacts GoCardless to change their bank details. It must start in the pending_submission state. Only compatible with Bacs mandates.

	
 mandate_suspended_by_payer: Transitions a mandate to suspended_by_payer, as if payer has suspended the mandate after it has been setup successfully. It must start in the activated state. Only compatible with PAY_TO mandates.

	
 refund_paid: Transitions a refund to paid. It must start in either the pending_submission or submitted state.

	
 refund_settled: Transitions a refund to paid, if it’s not already, then generates a payout that includes the refund, thereby settling the funds. It must start in one of pending_submission, submitted or paid states.

	
 refund_bounced: Transitions a refund to bounced. It must start in either the pending_submission, submitted, or paid state.

	
 refund_returned: Transitions a refund to refund_returned. The refund must start in pending_submission.

	
 payout_bounced: Transitions a payout to bounced. It must start in the paid state.

	
 billing_request_fulfilled: Authorises the billing request, and then fulfils it. The billing request must be in the pending state, with all actions completed except for bank_authorisation. Only billing requests with a payment_request are supported.

	
 billing_request_fulfilled_and_payment_failed: Authorises the billing request, fulfils it, and moves the associated payment to failed. The billing request must be in the pending state, with all actions completed except for bank_authorisation. Only billing requests with a payment_request are supported.

	
 billing_request_fulfilled_and_payment_paid_out: Authorises the billing request, fulfils it, and moves the associated payment to paid_out. The billing request must be in the pending state, with all actions completed except for bank_authorisation. Only billing requests with a payment_request are supported.

 Simulate a scenario

Runs the specific scenario simulator against the specific resource

Relative endpoint: POST /scenario_simulators/payment_failed/actions/run

Parameters

	links[resource]
	ID of the resource to run the simulation against.
Must be same type of resource as the simulator that is being run.
eg. Payment ID for payment_failed, Mandate ID for mandate_activated etc

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/scenario_simulators/payment_failed/actions/run HTTP/1.1
Content-Type: application/json
{
 "data": {
 "links": {
 "resource": "PM123"
 }
 }
}

HTTP/1.1 200 OK
{}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->scenarioSimulators()->run("payment_failed", [
 "params" => ["links" => ["resource" => "PM123"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.scenario_simulators.run("payment_failed", params={
 "links": { "resource": "PM123" }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.scenario_simulators.run(
 "payment_failed",
 params: { links: { resource: "PM123" } }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.scenario_simulators().run("payment_failed")
 .withLinks("resource", "PM123").
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const response = await client.scenarioSimulators.run(
 "payment_failed",
 {
 links: {
 resource: "PM123"
 }
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var simulateRequest = new GoCardless.Services.ScenarioSimulatorRunRequest()
{
 Links = new Dictionary<string, string>()
 {
 {"resource", "PM123"}
 }
};

var response = await gocardless.ScenarioSimulators.RunAsync(
 "payment_failed", simulateRequest
);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 scenarioSimulatorRunParams := gocardless.ScenarioSimulatorRunParams{
 Links: &gocardless.ScenarioSimulatorRunParamsLinks{
 Resource: "PM123",
 },
 }

 action := "payment_failed"
 scenarioSimulator, err := client.ScenarioSimulators.Run(context, action, scenarioSimulatorRunParams)

}

 Scheme Identifiers

This represents a scheme identifier (e.g. a SUN in Bacs or a CID in SEPA). Scheme identifiers are used to specify the beneficiary name that appears on customers’ bank statements.

Properties

	id
	Unique identifier, usually beginning with “SU”.
	address_line1
	The first line of the scheme identifier’s support address.
	address_line2
	The second line of the scheme identifier’s support address.
	address_line3
	The third line of the scheme identifier’s support address.
	can_specify_mandate_reference
	Whether a custom reference can be submitted for mandates using this scheme identifier.
	city
	The city of the scheme identifier’s support address.
	country_code
	ISO 3166-1 alpha-2 code.
	created_at
	Fixed timestamp, recording when this resource was created.
	currency
	The currency of the scheme identifier.
	email
	Scheme identifier’s support email address.
	minimum_advance_notice
	The minimum interval, in working days, between the sending of a pre-notification to the customer, and the charge date of a payment using this scheme identifier.

 By default, GoCardless sends these notifications automatically. Please see our compliance requirements for more details.

	name
	The name which appears on customers’ bank statements. This should usually be the merchant’s trading name.
	phone_number
	Scheme identifier’s support phone number.
	postal_code
	The scheme identifier’s support postal code.
	reference
	The scheme-unique identifier against which payments are submitted.
	region
	The scheme identifier’s support address region, county or department.
	scheme
	The scheme which this scheme identifier applies to.
	status
	The status of the scheme identifier. Only active scheme identifiers will be applied to a creditor and used against payments.

 Create a scheme identifier

Creates a new scheme identifier. The scheme identifier status will be pending while GoCardless is
processing the request. Once the scheme identifier is ready to be used the status will be updated to active.
At this point, GoCardless will emit a scheme identifier activated event via webhook to notify you of this change.
In Bacs, it will take up to five working days for a scheme identifier to become active. On other schemes, including SEPA,
this happens instantly.

Scheme identifier name validations

The name field of a scheme identifier can contain alphanumeric characters, spaces and
special characters.

Its maximum length and the special characters it supports depend on the scheme:

	scheme	maximum length	special characters allowed
	bacs	18 characters	
/ . & -

	sepa	70 characters	
/ ? : () . , + & < > ' "

	ach	16 characters	
/ ? : () . , ' + -

	faster_payments	18 characters	
/ ? : () . , ' + -

The validation error that gets returned for an invalid name will contain a suggested name
in the metadata that is guaranteed to pass name validations.

You should ensure that the name you set matches the legal name or the trading name of
the creditor, otherwise, there is an increased risk of chargeback.

Relative endpoint: POST /scheme_identifiers

Restricted: This endpoint is restricted to GoCardless Embed customers. Please contact us if you are interested in using this product.

Parameters

	name
	
required The name which appears on customers’ bank statements. This should usually be the merchant’s trading name.
	scheme
	
required The scheme which this scheme identifier applies to.
	links[creditor]
	
required ID of the associated creditor.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/scheme_identifiers HTTP/1.1
Content-Type: application/json
{
 "scheme_identifiers": {
 "name": "The Wine Club",
 "scheme": "bacs",
 "links": {
 "creditor": "CR123"
 }
 }
}
HTTP/1.1 201 Created
Location: /scheme_identifiers/SU123
Content-Type: application/json
{
 "scheme_identifiers": {
 "id": "SU123",
 "created_at": "2021-01-23T13:44:19.006Z",
 "name": "The Wine Club",
 "scheme": "bacs",
 "reference": null,
 "status": "pending",
 "minimum_advance_notice": 3,
 "can_specify_mandate_reference": false,
 "currency": "GBP",
 "address_line1": null,
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": null,
 "email": null,
 "phone_number": null
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->schemeIdentifiers()->create([
 'params' => ['scheme' => 'bacs',
 'name' => 'Example Ltd',
 'links' => ['creditor' => 'CR123']
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.scheme_identifiers.create(params={
 "scheme": "bacs",
 "name": "Example Ltd",
 "links": {
 "creditor": "CR123"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.scheme_identifiers.create(
 params: {
 scheme: "bacs",
 name: "Example Ltd",
 links: {
 creditor: "CR123"
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

SchemeIdentifier schemeIdentifier = client.schemeIdentifiers().create()
 .withScheme(SchemeIdentifierService.SchemeIdentifierCreateRequest.Scheme.BACS)
 .withName("The Wine Club")
 .withLinksCreditor("CR123")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const schemeIdentifier = await client.schemeIdentifiers.create({
 scheme: "bacs",
 name: "The Wine Club",
 links: {
 creditor: "CR123"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

SchemeIdentifierCreateRequest schemeIdentifierRequest = new SchemeIdentifierCreateRequest
{
 Name = "The Wine Club",
 Scheme = SchemeIdentifierCreateRequest.SchemeIdentifierScheme.Bacs,
 Links = new SchemeIdentifierCreateRequest.SchemeIdentifierLinks()
 {
 Creditor = "CR123"
 }
};

var schemeIdentifierResponse = await client.SchemeIdentifiers.CreateAsync(schemeIdentifierRequest);

GoCardless.Resources.SchemeIdentifier schemeIdentifier = schemeIdentifierResponse.SchemeIdentifier;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 context := context.Background()
 schemeIdentifierCreateParams := gocardless.SchemeIdentifierCreateParams{
 Name: "Durian Co",
 Scheme: "bacs",
 Links: gocardless.SchemeIdentifierCreateParamsLinks{
 Creditor: "CR123",
 },
 }
 schemeIdentifier, err := client.SchemeIdentifiers.Create(context, schemeIdentifierCreateParams)
 if err != nil {
 fmt.Printf("error creating scheme identifier: %s", err.Error())
 return
 }

}

 List scheme identifiers

Returns a cursor-paginated list of your scheme identifiers.

Relative endpoint: GET /scheme_identifiers

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	creditor
	Unique identifier, beginning with “CR”.
	limit
	Number of records to return.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/scheme_identifiers HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "scheme_identifiers": [
 {
 "id": "SU123",
 "created_at": "2021-01-23T09:41:36.234Z",
 "name": "The Wine Club",
 "scheme": "bacs",
 "reference": null,
 "status": "active",
 "minimum_advance_notice": 3,
 "can_specify_mandate_reference": false,
 "currency": "GBP",
 "address_line1": null,
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": null,
 "email": null,
 "phone_number": null
 }
],
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->schemeIdentifiers()->list()->records;

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.scheme_identifiers.list().records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.scheme_identifiers.list.records

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (SchemeIdentifier schemeIdentifier: client.schemeIdentifiers().all().execute()) {
 System.out.println(schemeIdentifier.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const schemeIdentifierList = await client.schemeIdentifiers.list();

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var schemeIdentifierListResponse = client.SchemeIdentifiers.All();

foreach (GoCardless.Resources.SchemeIdentifier schemeIdentifier in schemeIdentifierListResponse)
{
 Console.WriteLine(schemeIdentifier.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 context := context.Background()
 schemeIdentifierListParams := gocardless.SchemeIdentifierListParams{}

 schemeIdentifeirListResult, err := client.SchemeIdentifiers.List(context, schemeIdentifierListParams)
 if err != nil {
 fmt.Printf("error listing scheme identifiers: %s", err.Error())
 return
 }
 for _, schemeIdentifier := range schemeIdentifeirListResult.SchemeIdentifiers {
 fmt.Println(schemeIdentifier.Id)
 }

}

 Get a single scheme identifier

Retrieves the details of an existing scheme identifier.

Relative endpoint: GET /scheme_identifiers/SU123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/scheme_identifiers/SU123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "scheme_identifiers": {
 "id": "SU123",
 "created_at": "2021-01-23T09:41:36.234Z",
 "name": "The Wine Club",
 "scheme": "bacs",
 "reference": null,
 "status": "active",
 "minimum_advance_notice": 3,
 "can_specify_mandate_reference": false,
 "currency": "GBP",
 "address_line1": null,
 "address_line2": null,
 "address_line3": null,
 "city": null,
 "region": null,
 "postal_code": null,
 "country_code": null,
 "email": null,
 "phone_number": null
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->schemeIdentifiers()->get('SU123');

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.scheme_identifiers.get("SU123").attributes

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.scheme_identifiers.get("SU123").attributes

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

SchemeIdentifier schemeIdentifier = client.schemeIdentifiers().get("SU123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const schemeIdentifier = await client.schemeIdentifiers.find("SU123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var schemeIdentifierResponse = await client.SchemeIdentifiers.GetAsync("SU123");

GoCardless.Resources.SchemeIdentifier schemeIdentifier = schemeIdentifierResponse.SchemeIdentifier;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 context := context.Background()
 schemeIdentifier, err := client.SchemeIdentifiers.Get(context, "SU123")
 if err != nil {
 fmt.Printf("error getting scheme identifier: %s", err.Error())
 return
 }

}

 Subscriptions

Subscriptions create payments according to a schedule.

Recurrence Rules

The following rules apply when specifying recurrence:

	If day_of_month and start_date are not provided start_date will be the mandate’s next_possible_charge_date and the subscription will then recur based on the interval & interval_unit

	If month or day_of_month are present the following validations apply:

	interval_unit	month	day_of_month
	yearly	optional (required if day_of_month provided)	optional (invalid if month not provided)
	monthly	invalid	optional
	weekly	invalid	invalid

Examples:

	interval_unit	interval	month	day_of_month	valid?
	yearly	1	january	-1	valid
	monthly	6	 	 	valid
	monthly	6	 	12	valid
	weekly	2	 	 	valid
	yearly	1	march	 	invalid - missing day_of_month

	yearly	1	 	2	invalid - missing month

	monthly	6	august	12	invalid - month must be blank
	weekly	2	october	10	invalid - month and day_of_month must be blank

Rolling dates

When a charge date falls on a non-business day, one of two things will happen:

	if the recurrence rule specified -1 as the day_of_month, the charge date will be rolled backwards to the previous business day (i.e., the last working day of the month).
	
 otherwise the charge date will be rolled forwards to the next business day.

 Properties

	id
	Unique identifier, beginning with “SB”.
	amount
	Amount in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	app_fee
	The amount to be deducted from each payment as an app fee, to be paid to the partner integration which created the subscription, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	count
	The total number of payments that should be taken by this subscription.
	created_at
	Fixed timestamp, recording when this resource was created.
	currency
	
ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	day_of_month
	As per RFC 2445. The day of the month to charge customers on. 1-28 or -1 to indicate the last day of the month.
	earliest_charge_date_after_resume
	The earliest date that will be used as a charge_date on payments
created for this subscription if it is resumed. Only present for paused subscriptions.
This value will change over time.
	end_date
	Date on or after which no further payments should be created.

If this field is blank and count is not specified, the subscription will continue forever.

Deprecated: This field will be removed in a future API version. Use count to specify a number of payments instead.

	interval
	Number of interval_units between customer charge dates. Must be greater than or equal to 1. Must result in at least one charge date per year. Defaults to 1.
	interval_unit
	The unit of time between customer charge dates. One of weekly, monthly or yearly.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	month
	Name of the month on which to charge a customer. Must be lowercase. Only applies
when the interval_unit is yearly.
	name
	Optional name for the subscription. This will be set as the description on each payment created. Must not exceed 255 characters.
	payment_reference
	An optional payment reference. This will be set as the reference on each payment
created and will appear on your customer’s bank statement. See the documentation for
the create payment endpoint for more details.

Restricted: You need your own Service User Number to specify a payment reference for Bacs payments.

	retry_if_possible
	On failure, automatically retry payments using intelligent retries. Default is false. Important: To be able to use intelligent retries, Success+ needs to be enabled in GoCardless dashboard.

	start_date
	The date on which the first payment should be charged. Must be on or after the mandate’s next_possible_charge_date. When left blank and month or day_of_month are provided, this will be set to the date of the first payment. If created without month or day_of_month this will be set as the mandate’s next_possible_charge_date

	status
	One of:

 	
 pending_customer_approval: the subscription is waiting for customer approval before becoming active

	
 customer_approval_denied: the customer did not approve the subscription

	
 active: the subscription is currently active and will continue to create payments

	
 finished: all of the payments scheduled for creation under this subscription have been created

	
 cancelled: the subscription has been cancelled and will no longer create payments

	
 paused: the subscription has been paused and will not create payments

	upcoming_payments
	Up to 10 upcoming payments with their amounts and charge dates.

 Each instance will contain these properties:

 	
 amount: The amount of this payment, in minor unit (e.g. pence in GBP, cents in EUR).

	
 charge_date: The date on which this payment will be charged.

	links[mandate]
	ID of the associated mandate which the subscription will create payments against.

 Create a subscription

Creates a new subscription object

Relative endpoint: POST /subscriptions

Parameters

	amount
	
required Amount in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	currency
	
required ISO 4217 currency code. Currently “AUD”, “CAD”, “DKK”, “EUR”, “GBP”, “NZD”, “SEK” and “USD” are supported.
	interval_unit
	
required The unit of time between customer charge dates. One of weekly, monthly or yearly.
	app_fee
	The amount to be deducted from each payment as an app fee, to be paid to the partner integration which created the subscription, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	count
	The total number of payments that should be taken by this subscription.
	day_of_month
	As per RFC 2445. The day of the month to charge customers on. 1-28 or -1 to indicate the last day of the month.
	end_date
	Date on or after which no further payments should be created.

If this field is blank and count is not specified, the subscription will continue forever.

Deprecated: This field will be removed in a future API version. Use count to specify a number of payments instead.

	interval
	Number of interval_units between customer charge dates. Must be greater than or equal to 1. Must result in at least one charge date per year. Defaults to 1.
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	month
	Name of the month on which to charge a customer. Must be lowercase. Only applies
when the interval_unit is yearly.
	name
	Optional name for the subscription. This will be set as the description on each payment created. Must not exceed 255 characters.
	payment_reference
	An optional payment reference. This will be set as the reference on each payment
created and will appear on your customer’s bank statement. See the documentation for
the create payment endpoint for more details.

Restricted: You need your own Service User Number to specify a payment reference for Bacs payments.

	retry_if_possible
	On failure, automatically retry payments using intelligent retries. Default is false. Important: To be able to use intelligent retries, Success+ needs to be enabled in GoCardless dashboard.

	start_date
	The date on which the first payment should be charged. Must be on or after the mandate’s next_possible_charge_date. When left blank and month or day_of_month are provided, this will be set to the date of the first payment. If created without month or day_of_month this will be set as the mandate’s next_possible_charge_date

	links[mandate]
	
required ID of the associated mandate which the subscription will create payments against.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/subscriptions HTTP/1.1
Content-Type: application/json
{
 "subscriptions": {
 "amount": "2500",
 "currency": "GBP",
 "name": "Monthly Magazine",
 "interval_unit": "monthly",
 "day_of_month": "1",
 "metadata": {
 "order_no": "ABCD1234"
 },
 "links": {
 "mandate": "MA123"
 }
 }
}

HTTP/1.1 201 Created
Location: /subscriptions/SB123
Content-Type: application/json
{
 "subscriptions": {
 "id": "SB123",
 "created_at": "2014-10-20T17:01:06.000Z",
 "amount": 2500,
 "currency": "GBP",
 "status": "active",
 "name": "Monthly Magazine",
 "start_date": "2014-11-03",
 "end_date": null,
 "interval": 1,
 "interval_unit": "monthly",
 "day_of_month": 1,
 "month": null,
 "payment_reference": null,
 "app_fee": null,
 "earliest_charge_date_after_resume": null,
 "upcoming_payments": [
 { "charge_date": "2014-11-03", "amount": 2500 },
 { "charge_date": "2014-12-01", "amount": 2500 },
 { "charge_date": "2015-01-02", "amount": 2500 },
 { "charge_date": "2015-02-02", "amount": 2500 },
 { "charge_date": "2015-03-02", "amount": 2500 },
 { "charge_date": "2015-04-01", "amount": 2500 },
 { "charge_date": "2015-05-01", "amount": 2500 },
 { "charge_date": "2015-06-01", "amount": 2500 },
 { "charge_date": "2015-07-01", "amount": 2500 },
 { "charge_date": "2015-08-03", "amount": 2500 }
],
 "metadata": {
 "order_no": "ABCD1234"
 },
 "links": {
 "mandate": "MA123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->subscriptions()->create([
 "params" => ["amount" => 2500,
 "currency" => "GBP",
 "name" => "Monthly Magazine",
 "interval_unit" => "monthly",
 "day_of_month" => 1,
 "metadata" => ["order_no" => "ABCD1234"],
 "links" => ["mandate" => "MA123"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.subscriptions.create(params={
 "amount": "2500",
 "currency": "GBP",
 "name": "Monthly Magazine",
 "interval_unit": "monthly",
 "day_of_month": "1",
 "metadata": {
 "order_no": "ABCD1234"
 },
 "links": {
 "mandate": "MA123"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.subscriptions.create(
 params: {
 amount: 2500,
 currency: "GBP",
 name: "Monthly magazine",
 interval_unit: "monthly",
 day_of_month: 1,
 links: {
 mandate: "MD123"
 }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

import com.gocardless.services.SubscriptionService.SubscriptionCreateRequest.IntervalUnit;

Subscription subscription = client.subscriptions().create()
 .withAmount(2500)
 .withCurrency("GBP")
 .withName("Monthly Magazine")
 .withIntervalUnit(IntervalUnit.MONTHLY)
 .withDayOfMonth(1)
 .withMetadata("order_no", "ABCD1234")
 .withLinksMandate("MD123")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const subscription = await client.subscriptions.create({
 amount: "2500",
 currency: "GBP",
 name: "Monthly Magazine",
 interval_unit: "monthly",
 day_of_month: "1",
 metadata": {
 order_no: "ABCD1234"
 },
 links: {
 mandate: "MA123"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var subscriptionRequest = new GoCardless.Services.SubscriptionCreateRequest()
{
 Amount = 1000,
 Currency = "GBP",
 Name = "Monthly subscription",
 Interval = 1,
 IntervalUnit = GoCardless.Services.SubscriptionCreateRequest.SubscriptionIntervalUnit.Monthly,
 Links = new GoCardless.Services.SubscriptionCreateRequest.SubscriptionLinks()
 {
 Mandate = "MD0123"
 }
};

var subscriptionResponse = await gocardless.Subscriptions.CreateAsync(subscriptionRequest);
GoCardless.Resources.Subscription subscription = subscriptionResponse.Subscription;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 subscriptionCreateParams := gocardless.SubscriptionCreateParams{
 Amount: 1500, // 15 GBP in pence
 Currency: "GBP",
 IntervalUnit: "monthly",
 DayOfMonth: 5,
 Links: gocardless.SubscriptionCreateParamsLinks{
 Mandate: "MD123",
 },
 Metadata: map[string]interface{}{"subscription_number": "ABC123"},
 }

 subscription, err := client.Subscriptions.Create(ctx, subscriptionCreateParams)

}

 List subscriptions

Returns a cursor-paginated list of your subscriptions. Please note if the subscriptions are related to customers who have been removed, they will not be shown in the response.

Relative endpoint: GET /subscriptions

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	customer
	Unique identifier, beginning with “CU”.
	limit
	Number of records to return.
	mandate
	Unique identifier, beginning with “MD”. Note that this prefix may not apply to mandates created before 2016.
	status
	Upto 5 of:

 	
 pending_customer_approval

	
 customer_approval_denied

	
 active

	
 finished

	
 cancelled

	
 paused

Omit entirely to include subscriptions in all states.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/subscriptions HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "before": null,
 "after": null
 },
 "limit": 50
 },
 "subscriptions": [{
 "id": "SB123",
 "created_at": "2014-10-20T17:01:06.000Z",
 "amount": 2500,
 "currency": "GBP",
 "status": "active",
 "name": "Monthly Magazine",
 "start_date": "2014-11-03",
 "end_date": null,
 "interval": 1,
 "interval_unit": "monthly",
 "day_of_month": 1,
 "month": null,
 "payment_reference": null,
 "earliest_charge_date_after_resume": null,
 "upcoming_payments": [
 { "charge_date": "2014-11-03", "amount": 2500 },
 { "charge_date": "2014-12-01", "amount": 2500 },
 { "charge_date": "2015-01-02", "amount": 2500 },
 { "charge_date": "2015-02-02", "amount": 2500 },
 { "charge_date": "2015-03-02", "amount": 2500 },
 { "charge_date": "2015-04-01", "amount": 2500 },
 { "charge_date": "2015-05-01", "amount": 2500 },
 { "charge_date": "2015-06-01", "amount": 2500 },
 { "charge_date": "2015-07-01", "amount": 2500 },
 { "charge_date": "2015-08-03", "amount": 2500 }
],
 "metadata": {
 "order_no": "ABCD1234"
 },
 "links": {
 "mandate": "MA123"
 },
 "retry_if_possible": false
 }]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->subscriptions()->list();

$client->subscriptions()->list([
 "params" => ["customer" => "CU123"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.subscriptions.list().records

client.subscriptions.list(params={"customer": "CU123"}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.subscriptions.list

@client.subscriptions.list(params: { customer: "CU123" })

@client.subscriptions.list.records.each { |subscription| puts subscription.inspect }

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (Subscription subscription : client.subscriptions().all().withCustomer("CU123").execute()) {
 System.out.println(subscription.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const subscriptions = await client.subscriptions.list();

// List all subscriptions associated with a given customer.
const subscriptions = await client.subscriptions.list({ customer: "CU123" });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var subscriptionRequest = new GoCardless.Services.SubscriptionListRequest()
{
 Customer = "CU000123"
};

var subscriptionListResponse = gocardless.Subscriptions.All(subscriptionRequest);
foreach (GoCardless.Resources.Subscription subscription in subscriptionListResponse)
{
 Console.WriteLine(subscription.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 subscriptionListParams := gocardless.SubscriptionListParams{}
 subscriptionListResult, err := client.Subscriptions.List(context, subscriptionListParams)
 for _, subscription := subscriptionListResult.Subscriptions {
 fmt.Println(subscription.Id)
 }

}

 Get a single subscription

Retrieves the details of a single subscription.

Relative endpoint: GET /subscriptions/SB123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/subscriptions/SB123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "subscriptions": {
 "id": "SB123",
 "created_at": "2014-10-20T17:01:06.000Z",
 "amount": 2500,
 "currency": "GBP",
 "status": "active",
 "name": "Monthly Magazine",
 "start_date": "2014-11-03",
 "end_date": null,
 "interval": 1,
 "interval_unit": "monthly",
 "day_of_month": 1,
 "month": null,
 "payment_reference": null,
 "earliest_charge_date_after_resume": null,
 "upcoming_payments": [
 { "charge_date": "2014-11-03", "amount": 2500 },
 { "charge_date": "2014-12-01", "amount": 2500 },
 { "charge_date": "2015-01-02", "amount": 2500 },
 { "charge_date": "2015-02-02", "amount": 2500 },
 { "charge_date": "2015-03-02", "amount": 2500 },
 { "charge_date": "2015-04-01", "amount": 2500 },
 { "charge_date": "2015-05-01", "amount": 2500 },
 { "charge_date": "2015-06-01", "amount": 2500 },
 { "charge_date": "2015-07-01", "amount": 2500 },
 { "charge_date": "2015-08-03", "amount": 2500 }
],
 "metadata": {
 "order_no": "ABCD1234"
 },
 "links": {
 "mandate": "MA123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->subscriptions()->get("SB123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.subscriptions.get("SB123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.subscriptions.get("SB123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Subscription subscription = client.subscriptions().get("SB123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const subscription = await client.subscriptions.find("SB123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var subscriptionResponse = await gocardless.Subscriptions.GetAsync("SB0123");
GoCardless.Resources.Subscription subscription = subscriptionResponse.Subscription;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 subscription, err := client.Subscriptions.Get(context, "SB123")

}

 Update a subscription

Updates a subscription object.

This fails with:

	
 validation_failed if invalid data is provided when attempting to update a subscription.

	
 subscription_not_active if the subscription is no longer active.

	
 subscription_already_ended if the subscription has taken all payments.

	
 mandate_payments_require_approval if the amount is being changed and the mandate requires approval.

	
 number_of_subscription_amendments_exceeded error if the subscription amount has already been changed 10 times.

	
 forbidden if the amount is being changed, and the subscription was created by an app and you are not authenticated as that app, or if the subscription was not created by an app and you are authenticated as an app

	
 resource_created_by_another_app if the app fee is being changed, and the subscription was created by an app other than the app you are authenticated as

Relative endpoint: PUT /subscriptions/SB123

Parameters

	amount
	Amount in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	app_fee
	The amount to be deducted from each payment as an app fee, to be paid to the partner integration which created the subscription, in the lowest denomination for the currency (e.g. pence in GBP, cents in EUR).
	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	name
	Optional name for the subscription. This will be set as the description on each payment created. Must not exceed 255 characters.
	payment_reference
	An optional payment reference. This will be set as the reference on each payment
created and will appear on your customer’s bank statement. See the documentation for
the create payment endpoint for more details.

Restricted: You need your own Service User Number to specify a payment reference for Bacs payments.

	retry_if_possible
	On failure, automatically retry payments using intelligent retries. Default is false. Important: To be able to use intelligent retries, Success+ needs to be enabled in GoCardless dashboard.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 PUT https://api.gocardless.com/subscriptions/SU123 HTTP/1.1
Content-Type: application/json
{
 "subscriptions": {
 "name": "New name",
 "metadata": {
 "order_no": "ABCD4321"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "subscriptions": {
 "id": "SB123",
 "created_at": "2014-10-20T17:01:06.000Z",
 "amount": 2500,
 "currency": "GBP",
 "status": "active",
 "name": "New name",
 "start_date": "2014-11-03",
 "end_date": null,
 "interval": 1,
 "interval_unit": "monthly",
 "day_of_month": 1,
 "month": null,
 "payment_reference": null,
 "earliest_charge_date_after_resume": null,
 "upcoming_payments": [
 { "charge_date": "2014-11-03", "amount": 2500 },
 { "charge_date": "2014-12-01", "amount": 2500 },
 { "charge_date": "2015-01-02", "amount": 2500 },
 { "charge_date": "2015-02-02", "amount": 2500 },
 { "charge_date": "2015-03-02", "amount": 2500 },
 { "charge_date": "2015-04-01", "amount": 2500 },
 { "charge_date": "2015-05-01", "amount": 2500 },
 { "charge_date": "2015-06-01", "amount": 2500 },
 { "charge_date": "2015-07-01", "amount": 2500 },
 { "charge_date": "2015-08-03", "amount": 2500 }
],
 "metadata": {
 "order_no": "ABCD4321"
 },
 "links": {
 "mandate": "MA123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->subscriptions()->update("SB123", [
 "params" => ["name" => "New name",
 "metadata" => ["order_no" => "ABCD4321"]]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.subscriptions.update("SB123", params={
 "name": "New name"
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.subscriptions.update(
 "SB123",
 params: {
 metadata: { order_no: "ABCD4321" }
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.subscriptions().update("SB123")
 .withName("New name")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const subscription = await client.subscriptions.update(
 "SB123",
 {
 amount: "42",
 name: "New Name"
 }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var subscriptionRequest = new GoCardless.Services.SubscriptionUpdateRequest()
{
 Metadata = new Dictionary<string, string>()
 {
 {“custom_reference", "ref_09011991"}
 }
};

var subscriptionResponse = await gocardless.Subscriptions.UpdateAsync(“SB0123", subscriptionRequest);

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 subscriptionUpdateParams := gocardless.SubscriptionUpdateParams{
 Amount: 4200,
 Name: "New Name",
 }

 subscription, err := client.Subscriptions.Update(context, "SB123", subscriptionUpdateParams)

}

 Pause a subscription

Pause a subscription object.
No payments will be created until it is resumed.

This can only be used when a subscription is collecting a fixed number of payments (created using count),
when they continue forever (created without count or end_date) or
the subscription is already paused for a number of cycles.

When pause_cycles is omitted the subscription is paused until the resume endpoint is called.
If the subscription is collecting a fixed number of payments, end_date will be set to null.
When paused indefinitely, upcoming_payments will be empty.

When pause_cycles is provided the subscription will be paused for the number of cycles requested.
If the subscription is collecting a fixed number of payments, end_date will be set to a new value.
When paused for a number of cycles, upcoming_payments will still contain the upcoming charge dates.

This fails with:

	
 forbidden if the subscription was created by an app and you are not authenticated as that app, or if the subscription was not created by an app and you are authenticated as an app

	
 validation_failed if invalid data is provided when attempting to pause a subscription.

	
 subscription_paused_cannot_update_cycles if the subscription is already paused for a number of cycles and the request provides a value for pause_cycle.

	
 subscription_cannot_be_paused if the subscription cannot be paused.

	
 subscription_already_ended if the subscription has taken all payments.

	
 pause_cycles_must_be_greater_than_or_equal_to if the provided value for pause_cycles cannot be satisfied.

Relative endpoint: POST /subscriptions/SB123/actions/pause

Warning: Please note that any payments that have already been created from this
subscription will still be collected unless you manually cancel them.

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.
	pause_cycles
	The number of cycles to pause a subscription for. A cycle is one duration of interval and interval_unit. This should be a non zero positive value.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/subscriptions/SU123/actions/pause HTTP/1.1
Content-Type: application/json
{
 "data": {
 "metadata": {}
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "subscriptions": {
 "id": "SB123",
 "created_at": "2014-10-20T17:01:06.000Z",
 "amount": 2500,
 "currency": "GBP",
 "status": "paused",
 "name": "Subscription name",
 "start_date": "2014-11-03",
 "end_date": null,
 "interval": 1,
 "interval_unit": "monthly",
 "day_of_month": 1,
 "month": null,
 "payment_reference": null,
 "earliest_charge_date_after_resume": "2014-10-23",
 "upcoming_payments": [
],
 "metadata": {
 "order_no": "ABCD4321"
 },
 "links": {
 "mandate": "MA123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->subscriptions()->pause("SB123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.subscriptions.pause("SB123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.subscriptions.pause("SB123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.subscriptions().pause("SB123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const subscriptionResponse = await client.subscriptions.pause("SB123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var subscriptionResponse = await gocardless.Subscriptions.PauseAsync(“SB0123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 subscriptionPauseParams := gocardless.SubscriptionPauseParams{}
 subscription, err := client.Subscriptions.Pause(context, "SB123",subscriptionPauseParams)

}

 Resume a subscription

Resume a subscription object.
Payments will start to be created again based on the subscriptions recurrence rules.
The charge_date on the next payment will be the same as the subscriptions earliest_charge_date_after_resume

This fails with:

	
 forbidden if the subscription was created by an app and you are not authenticated as that app, or if the subscription was not created by an app and you are authenticated as an app

	
 validation_failed if invalid data is provided when attempting to resume a subscription.

	
 subscription_not_paused if the subscription is not paused.

Relative endpoint: POST /subscriptions/SB123/actions/resume

Warning: There is a mandatory minimum 14 business day wait between resuming an AUD subscription and its next charge date.
There is a mandatory minimum 10 calendar day wait between resuming an NZD subscription and its next charge date.

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/subscriptions/SU123/actions/resume HTTP/1.1
Content-Type: application/json
{
 "data": {
 "metadata": {}
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "subscriptions": {
 "id": "SB123",
 "created_at": "2014-10-20T17:01:06.000Z",
 "amount": 2500,
 "currency": "GBP",
 "status": "active",
 "name": "Subscription name",
 "start_date": "2014-11-03",
 "end_date": null,
 "interval": 1,
 "interval_unit": "monthly",
 "day_of_month": 1,
 "month": null,
 "payment_reference": null,
 "earliest_charge_date_after_resume": null,
 "upcoming_payments": [
 { "charge_date": "2014-11-03", "amount": 2500 },
 { "charge_date": "2014-12-01", "amount": 2500 },
 { "charge_date": "2015-01-02", "amount": 2500 },
 { "charge_date": "2015-02-02", "amount": 2500 },
 { "charge_date": "2015-03-02", "amount": 2500 },
 { "charge_date": "2015-04-01", "amount": 2500 },
 { "charge_date": "2015-05-01", "amount": 2500 },
 { "charge_date": "2015-06-01", "amount": 2500 },
 { "charge_date": "2015-07-01", "amount": 2500 },
 { "charge_date": "2015-08-03", "amount": 2500 }
],
 "metadata": {
 "order_no": "ABCD4321"
 },
 "links": {
 "mandate": "MA123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->subscriptions()->resume("SB123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.subscriptions.resume("SB123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.subscriptions.resume("SB123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.subscriptions().resume("SB123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const subscriptionResponse = await client.subscriptions.resume("SB123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var subscriptionResponse = await gocardless.Subscriptions.ResumeAsync(“SB0123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 subscriptionResumeParams := gocardless.SubscriptionResumeParams{}
 subscription, err := client.Subscriptions.Resume(context, "SB123", subscriptionResumeParams)

}

 Cancel a subscription

Immediately cancels a subscription; no more payments will be created under it. Any metadata supplied to this endpoint will be stored on the payment cancellation event it causes.

This will fail with a cancellation_failed error if the subscription is already cancelled or finished.

Relative endpoint: POST /subscriptions/SB123/actions/cancel

Warning: Please note that this will not cancel any payments that have already been created
from this subscription — these payments will still be collected unless you also
manually cancel them.

Parameters

	metadata
	Key-value store of custom data. Up to 3 keys are permitted, with key names up to 50 characters and values up to 500 characters.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/subscriptions/SU123/actions/cancel HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "subscriptions": {
 "id": "SB123",
 "created_at": "2014-10-20T17:01:06.000Z",
 "amount": 2500,
 "currency": "GBP",
 "status": "cancelled",
 "name": "Monthly Magazine",
 "start_date": "2014-11-03",
 "end_date": null,
 "interval": 1,
 "interval_unit": "monthly",
 "day_of_month": 1,
 "month": null,
 "payment_reference": null,
 "earliest_charge_date_after_resume": null,
 "upcoming_payments": [],
 "metadata": {
 "order_no": "ABCD1234"
 },
 "links": {
 "mandate": "MA123"
 },
 "retry_if_possible": false
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->subscriptions()->cancel("SB123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.subscriptions.cancel("SB123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.subscriptions.cancel("SB123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.subscriptions().cancel("SB123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const subscriptions = await client.subscriptions.cancel("SB123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var subscriptionResponse = await gocardless.Subscriptions.CancelAsync("SB0123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 subscriptionCancelParams := gocardless.SubscriptionCancelParams{}
 subscription, err := client.Subscriptions.Cancel(context, "SB123", subscriptionCancelParams)

}

 Tax Rates

Tax rates from tax authority.

We also maintain a static list of the tax rates for each jurisdiction.

Properties

	id
	The unique identifier created by the jurisdiction, tax type and version
	end_date
	Date at which GoCardless stopped applying the tax rate for the jurisdiction.
	jurisdiction
	The jurisdiction this tax rate applies to
	percentage
	The percentage of tax that is applied onto of GoCardless fees
	start_date
	Date at which GoCardless started applying the tax rate in the jurisdiction.
	type
	The type of tax applied by this rate

 List tax rates

Returns a cursor-paginated list of all tax rates.

Relative endpoint: GET /tax_rates

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	jurisdiction
	The jurisdiction this tax rate applies to
	limit
	Number of records to return.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/tax_rates?jurisdiction=GB HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "tax_rates": [
 {
 "id": "GB_VAT_1",
 "jurisdiction": "GB",
 "type": "VAT",
 "percentage": "20.0",
 "start_date": "2020-02-24",
 "end_date": null,
 }
],
 "meta": {
 "cursors": {
 "after": null,
 "before": null
 },
 "limit": 50
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->taxRates()->list([
 "params" => ["jurisdiction" => "GB"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.tax_rates.list(params={"jurisdiction": "GB" }).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.tax_rates.list(params: { jurisdiction: "GB" })

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.taxRates().all().withJurisdiction("GB").execute()

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const taxRates = await client.taxRates.list();

// List the Tax rate for a jurisdiction.
const taxRates = await client.taxRates.list({ jurisdiction: 'GB'});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var request = new GoCardless.Services.TaxRateListRequest()
{
 Jurisdiction = "GB",
};

var response = gocardless.TaxRates.All(request);
foreach (GoCardless.Resources.TaxRate rate in response)
{
 Console.WriteLine(rate.Rate);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 taxRateListParams := gocardless.TaxRateListParams{
 Jurisdiction: "GB",
 }

 taxRateListResult, err := client.TaxRates.List(context, taxRateListParams)

}

 Get a single tax rate

Retrieves the details of a tax rate.

Relative endpoint: GET /tax_rates/GB_VAT_1

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/tax_rates/GB_VAT_1 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "tax_rates": {
 "id": "GB_VAT_1",
 "jurisdiction": "GB",
 "type": "VAT",
 "percentage": "20.0",
 "start_date": "2020-02-24",
 "end_date": null
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->taxRates()->get("GB_VAT_1");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.tax_rates.get("GB_VAT_1")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.tax_rates.get("GB_VAT_1")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

TaxRate taxRate = client.taxRates().get("GB_VAT_1").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const taxRate = await client.taxRate.find("GB_VAT_1");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var taxRateResponse = await gocardless.TaxRate.GetAsync("GB_VAT_1");
GoCardless.Resources.TaxRate taxRate = taxRateResponse.TaxRate;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 taxRate, err := client.TaxRates.Get(context, "GB_VAT_1")

}

 Transferred Mandates

Mandates that have been transferred using Current Account Switch Service

Properties

	encrypted_customer_bank_details
	Encrypted customer bank account details, containing:
iban, account_holder_name, swift_bank_code, swift_branch_code, swift_account_number

	encrypted_decryption_key
	Random AES-256 key used to encrypt bank account details, itself encrypted with your public key.
	public_key_id
	The ID of an RSA-2048 public key, from your JWKS, used to encrypt the AES key.
	links[customer_bank_account]
	The ID of the updated customer_bank_account

	links[mandate]
	The ID of the transferred mandate

 Get updated customer bank details

Returns new customer bank details for a mandate that’s been recently transferred

Relative endpoint: GET /transferred_mandates/MD123

Restricted: This feature is in BETA and is restricted to organisations with the Transfer Bank Accounts upgrade

Parameters

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/transferred_mandates/MD123 HTTP/1.1
Content-Type: application/json

HTTP/1.1 200 (OK)
Location: /transferred_mandates/MD123
Content-Type: application/json
{
 "transferred_mandates": {
 "encrypted_decryption_key": "bXktZW5jcnlvcHRlZC1hZXMta2V5",
 "public_key_id": "9770a024c90fb646e48c952ec5d4f53586e62e8154048e6b96dd9f74f164a472",
 "encrypted_customer_bank_details": "OTc3MGEwMjRjOTBmYjY0NmU0OGM5NTJlYzVkNGY1MzU4NmU2MmU4MTU0MDQ4ZTZiOTZkZDlmNzRmMTY0YTQ3Mg==",
 "links": {
 "customer_bank_account": "BA123",
 "mandate": "MD123"
 }
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->transferred_mandates()->get("MD123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.transferred_mandates.get("MD123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.transferred_mandates.get("MD123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.transferredMandates().get("MD123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const transferredMandate = await client.transferredMandates.find("MD123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var response = await gocardless.TransferredMandates.GetAsync("MD123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 transferredMandate, err := client.TransferredMandates.Get(context, "MD123")

}

 Verification Details

Verification details represent any information needed by GoCardless to verify a creditor.

Restricted:
 These endpoints are restricted to customers who want to collect their merchant’s
 verification details and pass them to GoCardless via our API. Please get in
 touch if you wish to enable this feature on your
 account.

Properties

	address_line1
	The first line of the company’s address.
	address_line2
	The second line of the company’s address.
	address_line3
	The third line of the company’s address.
	city
	The city of the company’s address.
	company_number
	The company’s registration number.
	description
	A summary describing what the company does.
	directors
	The company’s directors.

 Each instance will contain these properties:

 	
 city: The city of the person’s address.

	
 country_code: ISO 3166-1 alpha-2 code.

	
 date_of_birth: The person’s date of birth.

	
 family_name: The person’s family name.

	
 given_name: The person’s given name.

	
 postal_code: The person’s postal code.

	
 street: The street of the person’s address.

	name
	The company’s legal name.
	postal_code
	The company’s postal code.
	links[creditor]
	ID of the creditor

 Create a verification detail

Creates a new verification detail

Relative endpoint: POST /verification_details

Warning: This endpoint only supports UK based limited companies. Therefore the
creditor’s creditor_type must be 'company' and country_code must be 'GB'.

Parameters

	address_line1
	
required The first line of the company’s address.
	city
	
required The city of the company’s address.
	company_number
	
required The company’s registration number.
	description
	
required A summary describing what the company does.
	directors
	
required The company’s directors.
	name
	
required The company’s legal name.
	postal_code
	
required The company’s postal code.
	address_line2
	The second line of the company’s address.
	address_line3
	The third line of the company’s address.
	links[creditor]
	
required ID of the associated creditor.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/verification_details/ HTTP/1.1
Content-Type: application/json
{
 "verification_details": {
 "name": "Acme Limited",
 "company_number": "03768189",
 "description": "wine and cheese seller",
 "address_line1": "12 Drury lane",
 "city": "London",
 "postal_code": "B4 7NJ",
 "directors": [{
 "date_of_birth": "1986-02-19",
 "given_name": "Gandalf",
 "family_name": "Grey",
 "city": "London",
 "street": "Drury Lane",
 "postal_code": "B4 7NJ",
 "country_code": "GB"
 }],
 "links": {
 "creditor": "CR123"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "verification_details": {
 "name": "Acme Limited",
 "company_number": "03768189",
 "description": "wine and cheese seller",
 "address_line1": "12 Drury lane",
 "address_line2": null,
 "address_line3": null,
 "city": "London",
 "region": null,
 "postal_code": "B4 7NJ",
 "country_code": "GB",
 "directors": [{
 "given_name": "Gandalf",
 "family_name": "Grey",
 "date_of_birth": "1986-02-19",
 "street": "Drury lane",
 "city":"London",
 "postal_code":"B4 7NJ",
 "country_code":"GB",
 }],
 },
 "links": {
 "creditor": "CR123"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$verification_details = $client->verificationDetails()->create([
 'params' => [
 'name' => 'Acme',
 'company_number' => '03768189',
 'address_line1' => '12 Drury lane',
 'city' => 'London',
 'description' => 'wine and cheese seller',
 'postal_code' => 'B4 7NJ',
 'directors' => [[
 'given_name' => 'Gandalf',
 'family_name' => 'Grey',
 'city' => 'London',
 'date_of_birth' => '1986-02-19',
 'street' => 'Drury lane',
 'postal_code' => 'B4 7NJ',
 'country_code' => 'GB'
]],
 'links' => [
 'creditor' => 'CR123'
]
]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.verification_details.create(params={
 "name": "Acme",
 "company_number": "03768189",
 "address_line1": "12 Drury lane",
 "city": "London",
 "description": "wine and cheese seller",
 "postal_code": "B4 7NJ",
 "directors": [{
 "given_name": "Gandalf",
 "family_name": "Grey",
 "city": "London",
 "date_of_birth": "1986-02-19",
 "street": "Drury lane",
 "postal_code": "B4 7NJ",
 "country_code": "GB"
 }],
 "links": {
 "creditor": "CR123"
 }
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.verification_details.create(params: {
 name: "Acme",
 company_number: "03768189",
 address_line1: "12 Drury lane",
 city: "London",
 description: "wine and cheese seller",
 postal_code: "B4 7NJ",
 directors: [{
 given_name: "Gandalf",
 family_name: "Grey",
 city: "London",
 date_of_birth: "1986-02-19",
 street: "Drury lane",
 postal_code: "B4 7NJ",
 country_code: "GB",
 }],
 links: {
 creditor: "CR123",
 },
})

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

VerificationDetailService.VerificationDetailCreateRequest.Directors director = new VerificationDetailService.VerificationDetailCreateRequest.Directors();

director.withCity("London");
director.withCountryCode("GB");
director.withDateOfBirth("1986-02-19");
director.withGivenName("Gandalf");
director.withFamilyName("Grey");
director.withPostalCode("B4 7NJ");
director.withStreet("Drury Lane");

VerificationDetail verificationDetail = client.verificationDetails().create()
 .withName("Acme")
 .withDescription("wine and cheese seller")
 .withCompanyNumber("03768189")
 .withAddressLine1("12 Drury Lane")
 .withCity("London")
 .withPostalCode("B4 7NJ")
 .withDirectors(director)
 .withLinksCreditor("CR123")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const verificationDetail = await client.verificationDetails.create({
 name: "Acme",
 company_number: "03768189",
 address_line1: "12 Drury lane",
 city: "London",
 description: "wine and cheese seller",
 postal_code: "B4 7NJ",
 directors: [{
 given_name: "Gandalf",
 family_name: "Grey",
 city: "London",
 date_of_birth: "1986-02-19",
 street: "Drury lane",
 postal_code: "B4 7NJ",
 country_code: "GB"
 }],
 links: {
 creditor: "CR123"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var verificationDetailCreateRequest = new VerificationDetailCreateRequest()
{
 Name = "Acme",
 CompanyNumber = "03768189",
 AddressLine1 = "12 Drury lane",
 City = "London",
 Description = "wine and cheese seller",
 PostalCode = "B4 7NJ",
 Directors = new VerificationDetailCreateRequest.VerificationDetailDirectors[]
 {
 new VerificationDetailCreateRequest.VerificationDetailDirectors
 {
 GivenName = "Gandalf",
 FamilyName = "Grey",
 City = "London",
 DateOfBirth = "1986-02-19",
 Street = "Drury lane",
 PostalCode = "B4 7NJ",
 CountryCode = "GB"
 }
 },
 Links = new VerificationDetailCreateRequest.VerificationDetailLinks()
 {
 Creditor = "CR123"
 }
};

var verificationDetailResponse = await client.VerificationDetails.CreateAsync(verificationDetailCreateRequest);

var verificationDetail = verificationDetailResponse.VerificationDetail;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 context := context.Background()
 verificationDetailCreateParams := gocardless.VerificationDetailCreateParams{
 Name: "Acme",
 CompanyNumber: "03768189",
 AddressLine1: "12 Drury lane",
 City: "London",
 Description: "wine and cheese seller",
 PostalCode: "B4 7NJ",
 Directors: []gocardless.VerificationDetailCreateParamsDirectors{
 {
 GivenName: "Gandalf",
 FamilyName: "Grey",
 City: "London",
 DateOfBirth: "1986-02-19",
 Street: "Drury Lane",
 PostalCode: "B4 7NJ",
 CountryCode: "GB",
 },
 },
 Links: gocardless.VerificationDetailCreateParamsLinks{
 Creditor: "CR123",
 },
 }

 verificationDetail, err := client.VerificationDetails.Create(context, verificationDetailCreateParams)
 if err != nil {
 fmt.Printf("error creating verification detail: %s", err.Error())
 return
 }

}

 List verification details

Returns a list of verification details belonging to a creditor.

Relative endpoint: GET /verification_details

Parameters

	creditor
	
required Unique identifier, beginning with “CR”.
	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	limit
	Number of records to return.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/verification_details?creditor=CR123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "verification_details": [{
 "name": "Acme Limited",
 "company_number": "03768189",
 "description": "wine and cheese seller",
 "address_line1": "12 Drury lane",
 "address_line2": null,
 "address_line3": null,
 "city": "London",
 "region": null,
 "postal_code": "B4 7NJ",
 "country_code": "GB",
 "directors": [{
 "given_name": "Gandalf",
 "family_name": "Grey",
 "date_of_birth": "1986-02-19",
 "street": "Drury lane",
 "city":"London",
 "postal_code":"B4 7NJ",
 "country_code":"GB",
 }],
 }],
 "links": {
 "creditor": "CR123"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$response = $client->verificationDetails()->list([
 'params' => [
 'creditor' => 'CR123'
]
])->records;

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.verification_details.list(params={
 "creditor": "CR123"
}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.verification_details.list(params: {
 creditor: "CR123",
}).records

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (VerificationDetail verificationDetail: client.verificationDetails().all().withCreditor("CR123").execute()){
 System.out.println(verificationDetail.getDescription());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const verificationDetailList = await client.verificationDetails.list({ creditor: "CR123" });

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var verificationDetailListRequest = new VerificationDetailListRequest()
{
 Creditor = "CR123"
};

var verificationDetailListResponse = client.VerificationDetails.All(verificationDetailListRequest);
foreach (var verificationDetail in verificationDetailListResponse)
{
 Console.WriteLine(verificationDetail.Description);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 context := context.Background()
 verificationDetailListParams := gocardless.VerificationDetailListParams{
 Creditor: "CR123",
 }
 verificationDetailList, err := client.VerificationDetails.List(context, verificationDetailListParams)
 if err != nil {
 fmt.Printf("error listing verification details: %+v", err)
 return
 }

 for _, verificationDetail := range verificationDetailList.VerificationDetails {
 fmt.Println(verificationDetail.Name)
 fmt.Println(verificationDetail.Description)
 }

}

 Webhooks

Basic description of a webhook

Properties

	id
	Unique identifier, beginning with “WB”.
	created_at
	Fixed timestamp, recording when this resource was created.
	is_test
	Boolean value showing whether this was a demo webhook for testing
	request_body
	The body of the request sent to the webhook URL
	request_headers
	The request headers sent with the webhook
	response_body
	The body of the response from the webhook URL
	response_body_truncated
	Boolean value indicating the webhook response body was truncated
	response_code
	The response code from the webhook request
	response_headers
	The headers sent with the response from the webhook URL
	response_headers_content_truncated
	Boolean indicating the content of response headers was truncated
	response_headers_count_truncated
	Boolean indicating the number of response headers was truncated
	successful
	Boolean indicating whether the request was successful or failed
	url
	URL the webhook was POST-ed to

 List webhooks

Returns a cursor-paginated list of your webhooks.

Relative endpoint: GET /webhooks

Parameters

	after
	Cursor pointing to the start of the desired set.
	before
	Cursor pointing to the end of the desired set.
	created_at[gt]
	Limit to records created after the specified date-time.
	created_at[gte]
	Limit to records created on or after the specified date-time.
	created_at[lt]
	Limit to records created before the specified date-time.
	created_at[lte]
	Limit to records created on or before the specified date-time.
	is_test
	Show only test/non test webhooks
	limit
	Number of records to return.
	successful
	Show only successful/failed webhooks

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/webhooks/WB123?successful=true HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "meta": {
 "cursors": {
 "after": null,
 "before": null
 },
 "limit": 5
 },
 "webhooks": [{
 "created_at": "2018-03-12T15:13:37.416Z",
 "id": "WB123",
 "is_test": true,
 "request_body": "{\"events\":[{\"id\":\"EV123\",\"created_at\":\"2018-03-12T15:13:37.158Z\",\"resource_type\":\"payments\",\"action\":\"created\",\"links\":{\"payment\":\"PM123\"},\"details\":{\"origin\":\"api\",\"cause\":\"payment_created\",\"description\":\"Payment created via the API.\"},\"metadata\":{}}]}",
 "request_headers": {
 "Content-Type": "application/json",
 "Origin": "https://api.gocardless.com",
 "User-Agent": "gocardless-webhook-service/1.1",
 "Webhook-Signature": "e4d043149b4cc27435d05ea275a09de2f810e45bed5448fd6a0a742a3846b365"
 },
 "response_body": "ok",
 "response_body_truncated": false,
 "response_code": 200,
 "response_headers": {
 "content-type": "text/html; charset=utf-8",
 "date": "Mon, 12 Mar 2018 15:13:37 GMT",
 },
 "response_headers_content_truncated": false,
 "response_headers_count_truncated": false,
 "successful": true,
 "url": "https://example.com/webhook_handler"
 }]
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->webhooks()->list();

$client->webhooks()->list([
 "params" => ["successful" => True]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.webhooks.list().records

client.webhooks.list(params={"successful": True}).records

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.webhooks.list

@client.webhooks.list(params: { successful: true })

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

for (Webhook webhook : client.webhooks().all().withSuccessful(true).execute()) {
 System.out.println(webhook.getId());
}

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const webhooks = await client.webhooks.list();

// List all webhooks past a certain date.
const webhooks = await client.webhooks.list({
 created_at: {
 gt: "2020-01-01T17:01:06.000Z"
 }
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var webhookRequest = new GoCardless.Services.WebhookListRequest()
{
 Successful = true
};

var webhookListResponse = gocardless.Webhooks.All(webhookRequest);
foreach (GoCardless.Resources.Webhook webhook in webhookListResponse)
{
 Console.WriteLine(webhook.Id);
}

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 webhookListParams := gocardless.WebhookListParams{
 CreatedAt: &gocardless.WebhookListParamsCreatedAt{
 Gt: "2020-01-01T17:01:06.000Z",
 },
 }

 webhookListResult, err := client.Webhooks.List(context, webhookListParams)
 for _, webhook := range webhookListResult.Webhooks {
 fmt.Println(webhook.Id)
 }

}

 Get a single webhook

Retrieves the details of an existing webhook.

Relative endpoint: GET /webhooks/WB123

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 GET https://api.gocardless.com/webhooks/WB123 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "webhooks": {
 "created_at": "2018-03-12T15:13:37.416Z",
 "id": "WB123",
 "is_test": true,
 "request_body": "{\"events\":[{\"id\":\"EV123\",\"created_at\":\"2018-03-12T15:13:37.158Z\",\"resource_type\":\"payments\",\"action\":\"created\",\"links\":{\"payment\":\"PM123\"},\"details\":{\"origin\":\"api\",\"cause\":\"payment_created\",\"description\":\"Payment created via the API.\"},\"metadata\":{}}]}",
 "request_headers": {
 "Content-Type": "application/json",
 "Origin": "https://api.gocardless.com",
 "User-Agent": "gocardless-webhook-service/1.1",
 "Webhook-Signature": "e4d043149b4cc27435d05ea275a09de2f810e45bed5448fd6a0a742a3846b365"
 },
 "response_body": "ok",
 "response_body_truncated": false,
 "response_code": 200,
 "response_headers": {
 "content-type": "text/html; charset=utf-8",
 "date": "Mon, 12 Mar 2018 15:13:37 GMT",
 },
 "response_headers_content_truncated": false,
 "response_headers_count_truncated": false,
 "successful": true,
 "url": "https://example.com/webhook_handler"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->webhooks()->get("WB123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.webhooks.get("WB123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.webhooks.get("WB123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

Webhook webhook = client.webhooks().get("WB123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const webhook = await client.webhooks.find("WB123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var webhookResponse = await gocardless.webhooks.GetAsync("WB123");
GoCardless.Resources.Webhook webhook = webhooksResponse.Webhook;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 webhook, err := client.Webhooks.Get(context, "WB123")

}

 Retry a webhook

Requests for a previous webhook to be sent again

Relative endpoint: POST /webhooks/WB123/actions/retry

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/webhooks/WB123/actions/retry HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "webhooks": {
 "created_at": "2018-03-12T15:13:37.416Z",
 "id": "WB123",
 "is_test": true,
 "request_body": "{\"events\":[{\"id\":\"EV123\",\"created_at\":\"2018-03-12T15:13:37.158Z\",\"resource_type\":\"payments\",\"action\":\"created\",\"links\":{\"payment\":\"PM123\"},\"details\":{\"origin\":\"api\",\"cause\":\"payment_created\",\"description\":\"Payment created via the API.\"},\"metadata\":{}}]}",
 "request_headers": {
 "Content-Type": "application/json",
 "Origin": "https://api.gocardless.com",
 "User-Agent": "gocardless-webhook-service/1.1",
 "Webhook-Signature": "e4d043149b4cc27435d05ea275a09de2f810e45bed5448fd6a0a742a3846b365"
 },
 "response_body": "ok",
 "response_body_truncated": false,
 "response_code": 200,
 "response_headers": {
 "content-type": "text/html; charset=utf-8",
 "date": "Mon, 12 Mar 2018 15:13:37 GMT",
 },
 "response_headers_content_truncated": false,
 "response_headers_count_truncated": false,
 "successful": true,
 "url": "https://example.com/webhook_handler"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->webhooks()->retry("WB123");

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.webhooks.retry("WB123")

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.webhooks.retry("WB123")

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

client.webhooks().retry("WB123").execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const webhookResponse = await client.webhooks.retry("WB123");

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var webhookResponse = await gocardless.webhooks.RetryAsync("WB123");

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 webhook, err := client.Webhooks.Retry(context, "WB123")

}

 Event Actions

All events are associated with a resource. This section goes through each resource in turn, and
lists all the possible actions that can relate to that resource. Some actions have different
variations - these are listed in the relevant tables below each action.

 Billing Request

This is a list of all the different values for action

created

This billing request has been created.

	Origin	Cause	Description
	gocardless	billing_request_created	This billing request has been created.
	api	billing_request_created	This billing request has been created.
	payer	billing_request_created	This billing request has been created.

flow_created

A billing request flow has been created against this billing request.

	Origin	Cause	Description
	gocardless	billing_request_flow_created	A billing request flow has been created against this billing request.
	api	billing_request_flow_created	A billing request flow has been created against this billing request.
	payer	billing_request_flow_created	A billing request flow has been created against this billing request.

flow_visited

The billing request flow has been visited.

	Origin	Cause	Description
	payer	billing_request_flow_visited	The billing request flow has been visited.

flow_exited

The billing request flow has been exited by the payer.

	Origin	Cause	Description
	payer	billing_request_flow_exited	The billing request flow has been exited by the payer.

collect_customer_details

Customer details have been collected for this billing request.

	Origin	Cause	Description
	api	billing_request_collect_customer_details	Customer details have been collected for this billing request.
	payer	billing_request_collect_customer_details	Customer details have been collected for this billing request.

select_institution

Institution details have been collected for this billing request.

	Origin	Cause	Description
	payer	billing_request_select_institution	Institution details have been collected for this billing request.

collect_bank_account

Bank account details have been collected for this billing request.

	Origin	Cause	Description
	api	billing_request_collect_bank_account	Bank account details have been collected for this billing request.
	payer	billing_request_collect_bank_account	Bank account details have been collected for this billing request.

payer_details_confirmed

Payer has confirmed all their details for this billing request.

	Origin	Cause	Description
	api	billing_request_payer_details_confirmed	Payer has confirmed all their details for this billing request.
	payer	billing_request_payer_details_confirmed	Payer has confirmed all their details for this billing request.

bank_authorisation_visited

A bank authorisation link for this billing request has been visited.

	Origin	Cause	Description
	payer	billing_request_bank_authorisation_visited	A bank authorisation link for this billing request has been visited.

bank_authorisation_authorised

A bank authorisation for this billing request has been authorised by the payer.

	Origin	Cause	Description
	payer	billing_request_bank_authorisation_authorised	A bank authorisation for this billing request has been authorised by the payer.

bank_authorisation_denied

A bank authorisation for this billing request has been denied by the payer.

	Origin	Cause	Description
	payer	billing_request_bank_authorisation_denied	A bank authorisation for this billing request has been denied by the payer.

bank_authorisation_expired

A bank authorisation for this billing request has expired.

	Origin	Cause	Description
	payer	billing_request_bank_authorisation_expired	A bank authorisation for this billing request has expired.

bank_authorisation_failed

A bank authorisation for this billing request has failed because of a bank account mismatch.

	Origin	Cause	Description
	payer	billing_request_bank_authorisation_failed	A bank authorisation for this billing request has failed because of a bank account mismatch.

fulfilled

This billing request has been fulfilled, and the resources have been created.

	Origin	Cause	Description
	gocardless	billing_request_fulfilled	This billing request has been fulfilled, and the resources have been created.
	api	billing_request_fulfilled	This billing request has been fulfilled, and the resources have been created.

cancelled

This billing request has been cancelled, none of the resources have been created.

	Origin	Cause	Description
	gocardless	billing_request_cancelled	This billing request has been cancelled, none of the resources have been created.
	api	billing_request_cancelled	This billing request has been cancelled, none of the resources have been created.

choose_currency

Currency details have been collected for this billing request.

	Origin	Cause	Description
	api	billing_request_choose_currency	Currency details have been collected for this billing request.
	payer	billing_request_choose_currency	Currency details have been collected for this billing request.

collect_amount

Amount has been collected for this billing request.

	Origin	Cause	Description
	payer	billing_request_collect_amount	Amount has been collected for this billing request.

payer_geo_blocked

Payer blocked for 24 hours for attempting to pay from an unsupported location.

	Origin	Cause	Description
	payer	payer_geo_blocked	Payer blocked for 24 hours for attempting to pay from an unsupported location.

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2021-04-08T17:01:06.000Z",
 "resource_type": "billing_request",
 "action": "created",
 "details": {
 "origin": "api",
 "cause": "billing_request_created",
 "description": "This billing request has been created."
 },
 "metadata": {},
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "billing_request": "BRQ123"
 }
 }
}

 Creditor

This is a list of all the different values for action

updated

Something has changed about this creditor. The property that has changed will be included in the event details. Currently, this webhook is sent for logo_url, verification_status, mandate_imports_enabled, custom_payment_pages_enabled and merchant_responsible_for_notifications.

	Origin	Cause	Description
	gocardless	creditor_updated	This creditor has been updated.

new_payout_currency_added

This creditor has added a new payout currency.

	Origin	Cause	Description
	gocardless	new_payout_currency_added	This creditor has added a new payout currency.

account_auto_frozen

This creditor account has been automatically frozen and had restrictions applied.

	Origin	Cause	Description
	gocardless	account_auto_frozen	This creditor account has been automatically frozen and had restrictions applied.

account_auto_frozen_reverted

This creditor accounts restrictions have been removed.

	Origin	Cause	Description
	gocardless	account_auto_frozen_reverted	The restrictions on this creditor account have been removed.

bounced_payout

A payout for this creditor has failed. Please contact your bank for more information or retry the payout.

	Origin	Cause	Description
	gocardless	bounced_payout	A payout for this creditor has failed. Please retry the payout or contact your bank for more information.

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2018-04-08T17:01:06.000Z",
 "resource_type": "creditors",
 "action": "updated",
 "links": {
 "creditor": "CR123"
 },
 "details": {
 "origin": "gocardless",
 "cause": "creditor_updated",
 "description": "This creditor has been updated.",
 "property": "fx_payout_currency"
 },
 "metadata": {}
 }
}

 Instalment Schedule

This is a list of all the different values for action

created

The instalment schedule has been created.

	Origin	Cause	Description
	api	instalment_schedule_created	Instalment schedule has been created via the API

creation_failed

The instalment schedule failed to create due to validation errors when creating the payments. The errors will be included in the event payload.

	Origin	Cause	Description
	api	instalment_schedule_creation_failed	Instalment schedule failed to be created

cancelled

The instalment schedule has been cancelled. Any pending payments have also been cancelled.

	Origin	Cause	Description
	api	instalment_schedule_cancelled	Instalment schedule has been cancelled
	gocardless	mandate_cancelled	Instalment schedule has been cancelled
	gocardless	mandate_failed	Instalment schedule has been cancelled
	gocardless	mandate_suspended_by_payer	Instalment schedule has been cancelled

errored

One or more instalments in this instalment schedule failed to collect successfully.

	Origin	Cause	Description
	gocardless	instalment_schedule_errored	Instalment schedule has errored
	gocardless	instalment_schedule_errored_late	One or more payments in the instalment schedule has had a late failure

resumed

The instalment schedule has been rectified by remedying any failed payments.

	Origin	Cause	Description
	gocardless	instalment_schedule_resumed	Instalment schedule has resumed

completed

This instalment schedule has concluded. No further instalments will be collected.

	Origin	Cause	Description
	gocardless	instalment_schedule_completed	Instalment schedule has completed

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "instalment_schedules",
 "action": "payment_created",
 "links": {
 "instalment_schedule": "IS123",
 "payment": "PM123"
 },
 "details": {
 "origin": "api",
 "cause": "payment_created",
 "description": "Payment created by an instalment schedule."
 },
 "metadata": {},
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 }
 }
}

 Mandate

This is a list of all the different values for action

created

The mandate has been created.

	Origin	Cause	Description
	api	mandate_created	Mandate created via the API.
	gocardless	mandate_created	Mandate created by a bulk change

customer_approval_granted

The mandate required additional approval from the customer (e.g. permission from a second signatory), and that approval has been granted.

	Origin	Cause	Description
	customer	customer_approval_granted	The customer has granted approval for this mandate

customer_approval_skipped

The mandate originally was believed to require additional approval from the customer (e.g. permission from a second signatory), but approval has been skipped (for example because the mandate was erroneously marked as needing a second signature).

	Origin	Cause	Description
	customer	customer_approval_skipped	The customer has skipped approval for this mandate

active

The mandate has been successfully set up by the customer’s bank.

	Origin	Cause	Description
	gocardless	mandate_activated	The time window after submission for the banks to refuse a mandate has ended without any errors being received, so this mandate is now active.
	bank	mandate_activated	The customer’s bank has confirmed that this mandate has been activated.

cancelled

The mandate has been cancelled, either by the customer through their bank or this API, or automatically when their bank account is closed.

	Origin	Cause	Scheme	Reason code	Description
	bank	bank_account_closed	ach	ACH_RETURN-R14
ACH_RETURN-R15	This bank account has been closed as the customer is deceased.
	bank	bank_account_closed	ach	ACH_RETURN-R02
ACH_RETURN-R12	The bank account for this mandate has been closed.
	bank	mandate_cancelled	ach	ACH_RETURN-R07	The mandate was cancelled at a bank branch.
	bank	authorisation_disputed	ach	ACH_RETURN-R05
ACH_RETURN-R06
ACH_RETURN-R08
ACH_RETURN-R10
ACH_RETURN-R11
ACH_RETURN-R29
ACH_RETURN-R31
ACH_RETURN-R51	The customer disputes having authorised you to set up a mandate with them.
	bank	invalid_bank_details	ach	ACH_RETURN-R03
ACH_RETURN-R04
ACH_RETURN-R13
ACH_RETURN-R28
ACH_RETURN-R82	The specified bank account does not exist or was closed.
	bank	direct_debit_not_enabled	ach	ACH_RETURN-R16
ACH_RETURN-R34	The bank account does not support Direct Debit.
	bank	refer_to_payer	ach	ACH_RETURN-R05
ACH_RETURN-R06
ACH_RETURN-R08
ACH_RETURN-R20
ACH_RETURN-R29
ACH_RETURN-R26	This mandate has been cancelled because a payment under it failed.
	bank	return_on_odfi_request	ach	ACH_RETURN-R06	mandate_cancelled_because_payment_charged_back
	api	mandate_cancelled	-	-	The mandate was cancelled at your request.
	api	bank_account_closed	-	-	The customer’s account was disabled at your request.
	bank	mandate_cancelled	bacs	ADDACS-0
ADDACS-1	The mandate was cancelled at a bank branch.
	bank	bank_account_closed	bacs	ADDACS-2	This bank account has been closed as the customer is deceased.
	bank	bank_account_transferred	bacs	ADDACS-3
ADDACS-C
ADDACS-E	The customer’s bank account was transferred to a different bank or building society.
	bank	bank_account_closed	bacs	ADDACS-B	The customer’s account was closed at their bank.
	bank	authorisation_disputed	bacs	ADDACS-D	The customer has disputed the amount of notice specified on the mandate via their bank.
	bank	mandate_cancelled	bacs	ARUDD-1	The mandate was cancelled at a bank branch.
	bank	bank_account_closed	bacs	ARUDD-2	This mandate has been cancelled, because a payment against it indicated that the customer is deceased.
	bank	bank_account_closed	bacs	ARUDD-B	The bank account for this mandate has been closed.
	bank	refer_to_payer	bacs	ARUDD-6	This mandate has been cancelled because a payment under it failed.
	bank	authorisation_disputed	bacs	DDICA-4	The customer claims that they asked you to cancel their mandate before you took the payment.
	bank	authorisation_disputed	bacs	DDICA-5
DDICA-6
DDICA-8	The customer disputes having authorised you to set up a mandate with them.
	bank	invalid_bank_details	sepa_core	AC01
BE06	The bank account specified does not exist. Any subscriptions and pending payments will also be cancelled.
	bank	bank_account_closed	sepa_core	AC04	The bank account for this mandate has been closed. Any subscriptions and pending payment will also be cancelled.
	bank	direct_debit_not_enabled	sepa_core	AC06
AG01	The bank account for this mandate does not support SEPA direct debit. Any subscriptions and pending payments will also be cancelled.
	bank	mandate_cancelled	sepa_core	MD01	A payment under this mandate failed, indicating that the mandate has been cancelled at the customer’s bank. Any subscriptions and pending payments will also be cancelled.
	bank	bank_account_closed	sepa_core	MD07	This mandate has been cancelled because the customer is deceased.
	bank	mandate_cancelled	betalingsservice	MANDATE_INFORMATION-0232
MANDATE_INFORMATION-0233
MANDATE_INFORMATION-0234	This mandate was cancelled by the customer or their bank.
	bank	mandate_cancelled	betalingsservice	INFORMATION_LIST-0257	This mandate was cancelled by the customer or their bank.
	bank	direct_debit_not_enabled	becs	2	The bank account does not support Direct Debit.
	bank	other	becs	2	This mandate has been cancelled because a payment under it failed.
	bank	bank_account_closed	becs	3	The bank account for this mandate has been closed.
	bank	bank_account_closed	becs	4	This bank account has been closed as the customer is deceased.
	bank	authorisation_disputed	becs	UDU
NAUT	The customer disputes having authorised you to set up a mandate with them.
	bank	mandate_cancelled	becs	CBC	This mandate was cancelled by the customer or their bank.
	bank	invalid_bank_details	becs	RC02	The bank account specified does not exist.
	bank	authorisation_disputed	becs	MD01	The customer disputes having authorised you to set up a mandate with them.
	bank	bank_account_closed	becs	AC04	The customer’s account was closed at their bank.
	bank	bank_account_closed	becs	MD07	This bank account has been closed as the customer is deceased.
	bank	invalid_bank_details	becs	AC01	The bank account specified does not exist. Any subscriptions and pending payments will also be cancelled.
	bank	refer_to_payer	becs	NARR	There was an internal error processing this mandate.
	bank	mandate_cancelled	pay_to	MD16
MS02	This mandate was cancelled by the customer or their bank.
	bank	mandate_cancelled	pay_to	MD17	The mandate was cancelled at your request.
	bank	mandate_cancelled	pay_to	MD21	The mandate has been cancelled due to fraud.
	bank	mandate_cancelled	pay_to	MSUC
MCFC
MCOC	The mandate has been suspended.
	bank	refer_to_payer	pay_to	UNKN	This mandate was cancelled by the customer or their bank.
	bank	invalid_bank_details	pay_to	AC02	This mandate was cancelled due to a Notification of Change indicating the customer’s account number or branch number was incorrect, please contact the customer.
	bank	other	pay_to	AC06	The account associated with the customer’s mandate is blocked.
	bank	invalid_bank_details	pay_to	AC13	This mandate was cancelled due to a Notification of Change indicating the customer’s selected account type was incorrect, please contact the customer.
	bank	bank_account_closed	pay_to	AC04
AC05	The customer’s account was closed at their bank.
	bank	bank_account_closed	pay_to	MD07	This mandate has been cancelled because the customer is deceased.
	bank	other	pay_to	SL11
SL12	The customer’s account is not permitted to send funds to the beneficiary.
	bank	bank_account_closed	becs_nz	DISHONOUR-AC04	The customer’s account was closed at their bank.
	bank	invalid_bank_details	becs_nz	DISHONOUR-AC05
NEGATIVE_ACKNOWLEDGEMENT-AC05	The bank account specified does not exist. Any subscriptions and pending payments will also be cancelled.
	bank	bank_account_closed	pad	PAYMENT_STATUS_REPORT-905	The customer’s account was closed at their bank.
	bank	bank_account_closed	pad	PAYMENT_STATUS_REPORT-910	This bank account has been closed as the customer is deceased.
	bank	authorisation_disputed	pad	PAYMENT_STATUS_REPORT-915	The customer disputes having authorised you to set up a mandate with them.
	bank	mandate_cancelled	pad	PAYMENT_STATUS_REPORT-917
PAYMENT_STATUS_REPORT-920	This mandate was cancelled by the customer or their bank.
	bank	invalid_bank_details	pad	PAYMENT_STATUS_REPORT-0518
PAYMENT_STATUS_REPORT-0567	The specified bank account does not exist or was closed.
	bank	mandate_cancelled	faster_payments	PAYER_MANDATE_CANCELLED	This mandate was cancelled by the customer or their bank.
	gocardless	mandate_cancelled	faster_payments	MERCHANT_MANDATE_CANCELLED	The mandate was cancelled at your request.

failed

The mandate could not be set up, generally because the specified bank account does not accept Direct Debit payments or is closed.

	Origin	Cause	Scheme	Reason code	Description
	bank	bank_account_closed	ach	ACH_RETURN-R14
ACH_RETURN-R15	This bank account has been closed as the customer is deceased.
	bank	refer_to_payer	ach	ACH_RETURN-C01
ACH_RETURN-C02
ACH_RETURN-C03
ACH_RETURN-C06
ACH_RETURN-C07
NOTIFICATION_OF_CHANGE-C01
NOTIFICATION_OF_CHANGE-C02
NOTIFICATION_OF_CHANGE-C03
NOTIFICATION_OF_CHANGE-C06
NOTIFICATION_OF_CHANGE-C07
NOTIFICATION_OF_CHANGE-C08
NOTIFICATION_OF_CHANGE-C09	This mandate was cancelled due to a Notification of Change indicating the customer’s account number or branch number was incorrect, please contact the customer.
	bank	refer_to_payer	ach	ACH_RETURN-C05
NOTIFICATION_OF_CHANGE-C05	This mandate was cancelled due to a Notification of Change indicating the customer’s selected account type was incorrect, please contact the customer.
	bank	bank_account_closed	ach	ACH_RETURN-R02
ACH_RETURN-R12	The bank account for this mandate has been closed.
	bank	mandate_cancelled	ach	ACH_RETURN-R07	The mandate was already cancelled.
	bank	authorisation_disputed	ach	ACH_RETURN-R07
ACH_RETURN-R10
ACH_RETURN-R29
ACH_RETURN-R51	The mandate was already cancelled.
	bank	invalid_bank_details	ach	ACH_RETURN-R03
ACH_RETURN-R04
ACH_RETURN-R13
ACH_RETURN-R28
ACH_RETURN-R82	The specified bank account does not exist or was closed.
	bank	direct_debit_not_enabled	ach	ACH_RETURN-R16
ACH_RETURN-R20
ACH_RETURN-R34	The bank account does not support Direct Debit.
	bank	refer_to_payer	ach	ACH_RETURN-R05
ACH_RETURN-R06
ACH_RETURN-R08
ACH_RETURN-R20
ACH_RETURN-R29
ACH_RETURN-R31
ACH_RETURN-R26	This mandate has been cancelled because a payment under it failed.
	bank	other	ach	ACH_RETURN-R85	This mandate has been cancelled because a payment under it failed.
	bank	return_on_odfi_request	ach	ACH_RETURN-R06	The mandate has been cancelled because a payment under it was charged back.
	bank	authorisation_disputed	ach	ACH_RETURN-R05
ACH_RETURN-R08
ACH_RETURN-R11	The customer disputes having authorised you to set up a mandate with them.
	bank	invalid_bank_details	bacs	ARUDD-5
ARUDD-Y
ARUDD-E	The specified bank account does not exist or was closed.
	bank	refer_to_payer	bacs	ARUDD-6	This mandate has been cancelled because a payment under it failed.
	bank	bank_account_closed	bacs	AUDDIS-2	The bank account for this mandate has been closed as the customer is deceased.
	bank	invalid_bank_details	bacs	AUDDIS-5	The specified bank account does not exist or was closed.
	bank	bank_account_closed	bacs	AUDDIS-B	The customer’s account was closed at their bank.
	bank	direct_debit_not_enabled	bacs	AUDDIS-F
AUDDIS-G
AUDDIS-N	The bank account does not support Direct Debit.
	bank	bank_account_transferred	bacs	AUDDIS-3
AUDDIS-C	The customer’s bank account was transferred to a different bank or building society.
	bank	invalid_bank_details	becs	1
5	The bank account specified does not exist.
	bank	direct_debit_not_enabled	becs	2	The bank account does not support Direct Debit.
	bank	invalid_bank_details	becs	DEN	The bank account specified does not exist. Any subscriptions and pending payments will also be cancelled.
	bank	other	becs	7
8
9	There was an internal error processing this mandate.
	bank	invalid_bank_details	becs	RC02	The bank account specified does not exist.
	bank	authorisation_disputed	becs	MD01	The customer disputes having authorised you to set up a mandate with them.
	bank	bank_account_closed	becs	AC04	The customer’s account was closed at their bank.
	bank	bank_account_closed	becs	MD07	This bank account has been closed as the customer is deceased.
	bank	invalid_bank_details	becs	AC01	The bank account specified does not exist. Any subscriptions and pending payments will also be cancelled.
	bank	refer_to_payer	becs	NARR	There was an internal error processing this mandate.
	bank	mandate_cancelled	pay_to	MD20	The mandate has expired.
	bank	refer_to_payer	pay_to	NARR
UNKN	There was an internal error processing this mandate.
	bank	invalid_bank_details	becs_nz	DISHONOUR-AC05
NEGATIVE_ACKNOWLEDGEMENT-AC05	The bank account specified does not exist. Any subscriptions and pending payments will also be cancelled.
	bank	bank_account_closed	becs_nz	DISHONOUR-AC04	The customer’s account was closed at their bank.
	bank	invalid_bank_details	becs_nz	DISHONOUR-AC03	The customer’s bank account was transferred to a different bank or building society.
	bank	mandate_cancelled	becs_nz	DISHONOUR-AG01	This mandate was cancelled by the customer or their bank.
	bank	other	becs_nz	DISHONOUR-BE05	The customer disputes having authorised you to set up a mandate with them.
	bank	refer_to_payer	becs_nz	DISHONOUR-AM04
DISHONOUR-MS01	This mandate has been cancelled because a payment under it failed.
	bank	invalid_bank_details	pad	PAYMENT_STATUS_REPORT-900
PAYMENT_STATUS_REPORT-902
PAYMENT_STATUS_REPORT-912
PAYMENT_STATUS_REPORT-1023
PAYMENT_STATUS_REPORT-2014
PAYMENT_STATUS_REPORT-2017
PAYMENT_STATUS_REPORT-2018
PAYMENT_STATUS_REPORT-2019
PAYMENT_STATUS_REPORT-2020
PAYMENT_STATUS_REPORT-2034
PAYMENT_STATUS_REPORT-0518
PAYMENT_STATUS_REPORT-0567
PAYMENT_STATUS_REPORT-0573	The specified bank account does not exist or was closed.
	bank	bank_account_closed	pad	PAYMENT_STATUS_REPORT-905	The customer’s account was closed at their bank.
	bank	bank_account_closed	pad	PAYMENT_STATUS_REPORT-910	This bank account has been closed as the customer is deceased.
	bank	refer_to_payer	pad	PAYMENT_STATUS_REPORT-914	The account holder name may be different than that associated with the electronic transaction to run.
	bank	invalid_bank_details	sepa_core	AC01	The bank account specified does not exist. Any subscriptions and pending payments will also be cancelled.

transferred

The mandate has been transferred to a different bank account either using a bank switching service (where it is supported) or with help from GoCardless Support when a customer asks to change their bank account (we can make the switch after verifying the details). The event will include links[previous_customer_bank_account] and links[new_customer_bank_account]. When using a bank switching service, the mandate may have been submitted again, depending on how the involved banks handled the transfer.

	Origin	Cause	Description
	bank	bank_account_transferred	The customer’s bank account was transferred to a different bank or building society.
	bank	bank_account_transferred	The customer’s bank account was transferred to a different bank or building society.

expired

No collection attempts were made against the mandate within the dormancy period of your service user number. As a result it has expired, and no further collections can be taken against it. If you wish to continue taking payments from this customer you should request their permission and use the reinstate endpoint.

	Origin	Cause	Description
	gocardless	mandate_expired	The mandate is being marked as expired, because no payments have been collected against it for the dormancy period of your service user number. If you have access to the mandate reinstation API endpoint, you can use this to attempt to set this mandate up again.
	bank	mandate_cancelled	This mandate was cancelled by the customer or their bank.
	gocardless	mandate_cancelled	The mandate has expired.

submitted

The mandate has been submitted to the banks, and should become active in a few days, unless the bank declines the request.

	Origin	Cause	Description
	gocardless	mandate_submitted	The mandate has been submitted to the banks.
	bank	bank_account_transferred	The customer’s bank account was transferred to a different bank or building society.
	bank	bank_account_transferred	The customer’s bank account was transferred to a different bank or building society.

resubmission_requested

A request to resubmit the mandate was made by the mandate reinstate endpoint.

	Origin	Cause	Description
	api	resubmission_requested	An attempt to reinstate this mandate was requested.
	bank	bank_account_transferred	The customer’s bank account was transferred to a different bank or building society.
	bank	bank_account_transferred	The customer’s bank account was transferred to a different bank or building society.

reinstated

The mandate has become active again, after it was cancelled or expired. This can be due to the customer’s bank wishing to undo a cancellation or expiry notice they sent, or because the mandate was successfully reinstated via the reinstate endpoint.

	Origin	Cause	Description
	gocardless	mandate_reinstated	The time window after submission for the banks to refuse a mandate has ended without any errors being received, so this mandate is now active.
	bank	mandate_reinstated	A cancelled mandate has been re-instated by the customer’s bank.

replaced

The mandate has been cancelled and replaced by a new mandate (for example, because the creditor has moved to a new Service User Number). The event will include links[new_mandate] with the ID of the new mandate.

	Origin	Cause	Description
	gocardless	scheme_identifier_changed	The creditor has changed to a different scheme identifier, so this mandate has been cancelled and replaced by a new one.

consumed

The mandate has been used to create a payment, and has now been consumed. It cannot be used again.

	Origin	Cause	Description
	gocardless	mandate_consumed	The mandate has been used to create a payment, and has now been consumed. It cannot be used again.

blocked

The mandate has been blocked because the customer’s details matched against an entry in either our global blocklist or the blocklist populated by you. This mandate cannot be unblocked and no payments can be created against it. If you still wish to collect payments from this customer, you will need to remove their details from any blocks you have created and ask them to set up a new mandate. If you contacted GoCardless to block the customer’s details, you will need to make a request to unblock them.

	Origin	Cause	Description
	gocardless	mandate_blocked	The mandate has been blocked because the customer’s details matched against an entry in the blocklist populated by you.
	gocardless	mandate_blocked_by_gocardless	The mandate has been blocked because the customer’s details matched against an entry in our global blocklist.

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "mandates",
 "action": "cancelled",
 "details": {
 "origin": "bank",
 "cause": "bank_account_closed",
 "description": "The bank account for this mandate has been closed.",
 "scheme": "bacs",
 "reason_code": "ADDACS-B"
 },
 "metadata": {},
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "mandate": "MD123"
 }
 }
}

GET https://api.gocardless.com/events/EV456 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV456",
 "created_at": "2014-04-08T17:03:12.000Z",
 "resource_type": "mandates",
 "action": "cancelled",
 "details": {
 "origin": "api",
 "cause": "mandate_cancelled",
 "description": "The mandate was cancelled via an API call."
 },
 "metadata": {
 "cancellor_id": "some_id"
 },
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "mandate": "MD456"
 }
 }
}

GET https://api.gocardless.com/events/EV789 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV789",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "mandates",
 "action": "transferred",
 "details": {
 "origin": "bank",
 "cause": "bank_account_transferred",
 "description": "The customer's bank account was transferred to a different bank or building society.",
 "scheme": "bacs",
 "reason_code": "AUDDIS-C"
 },
 "metadata": {},
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "mandate": "MD789",
 "previous_customer_bank_account": "BA123",
 "new_customer_bank_account": "BA456"
 }
 }
}

 Payer Authorisation

This is a list of all the different values for action

completed

PayerAuthorisation is completed. Customer, CustomerBankAccount and Mandate have been created.

	Origin	Cause	Description
	gocardless	payer_authorisation_completed	PayerAuthorisation is completed. Customer, CustomerBankAccount and Mandate have been created.

failed

PayerAuthorisation is failed. Customer, CustomerBankAccount and Mandate creation have been failed.

	Origin	Cause	Description
	gocardless	customer_creation_failed	PayerAuthorisation has failed. Customer, CustomerBankAccount and Mandate creation have failed.
	gocardless	customer_bank_account_creation_failed	PayerAuthorisation has failed. Customer, CustomerBankAccount and Mandate creation have failed.
	gocardless	mandate_creation_failed	PayerAuthorisation has failed. Customer, CustomerBankAccount and Mandate creation have failed.

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

 Payment

This is a list of all the different values for action

created

The payment has been created.

	Origin	Cause	Description
	api	payment_created	Payment created via the API.
	gocardless	payment_created	Payment created by a subscription.
	api	instalment_schedule_created	Payment created by an instalment schedule.

customer_approval_granted

The payment required additional approval from the customer before it could be submitted, and that approval has been granted.

	Origin	Cause	Description
	customer	customer_approval_granted	The customer granted approval for this payment

customer_approval_denied

The payment required additional approval from the customer before it could be submitted, and that approval has been denied.

	Origin	Cause	Description
	customer	customer_approval_denied	The customer denied approval for this payment

submitted

The payment has been submitted to the banks. It will be a few days until it is collected, or fails.

	Origin	Cause	Description
	gocardless	payment_submitted	Payment submitted to the banks. As a result, it can no longer be cancelled.

confirmed

The payment has been collected from the customer’s bank account, and is now being held by GoCardless. It can take up to 5 working days for a payment to be collected, and will then be held for a short time before becoming paid_out.

	Origin	Cause	Description
	gocardless	payment_confirmed	Enough time has passed since the payment was submitted for the banks to return an error, so this payment is now confirmed.

chargeback_cancelled

The customer’s bank has cancelled the chargeback request. This is almost always at the request of the customer.

	Origin	Cause	Description
	bank	payment_confirmed	The chargeback for this payment was reversed
	gocardless	payment_confirmed	The chargeback for this payment was reversed

paid_out

The payment has left GoCardless and has been sent to the creditor’s bank account.

	Origin	Cause	Description
	gocardless	payment_paid_out	The payment has been paid out by GoCardless.

late_failure_settled

The payment was a late failure which had already been paid out, and has been debited from a payout.

	Origin	Cause	Description
	gocardless	late_failure_settled	This late failed payment has been settled against a payout.

chargeback_settled

The payment was charged back, having previously been paid out, and has been debited from a payout.

	Origin	Cause	Description
	gocardless	chargeback_settled	This charged back payment has been settled against a payout.

surcharge_fee_debited

A surcharge fee has been charged for this payment, because it failed or got charged back.

	Origin	Cause	Description
	gocardless	surcharge_fee_debited	A surcharge fee has been charged for a payment.

failed

The payment could not be collected, usually because the customer did not have sufficient funds available. GoCardless will automatically retry the payment if event’s will_attempt_retry field is true. See the intelligent retries section below.

	Origin	Cause	Scheme	Reason code	Description
	bank	refer_to_payer	ach	ACH_RETURN-R01
ACH_RETURN-R09	The customer’s account had insufficient funds to make this payment.
	bank	bank_account_closed	ach	ACH_RETURN-R14
ACH_RETURN-R15	This payment failed because the customer is deceased.
	bank	invalid_bank_details	ach	ACH_RETURN-R04
ACH_RETURN-R13
ACH_RETURN-R28
ACH_RETURN-R82	The account number was invalid. The mandate will also be cancelled or failed.
	bank	invalid_bank_details	ach	ACH_RETURN-R03	The bank account specified does not exist. The mandate will also be cancelled.
	bank	bank_account_closed	ach	ACH_RETURN-R02
ACH_RETURN-R12	The bank account for this payment has been closed. The mandate will also be cancelled.
	bank	refer_to_payer	ach	ACH_RETURN-R05
ACH_RETURN-R16
ACH_RETURN-R32
ACH_RETURN-R34
ACH_RETURN-R83	The customer’s bank wasn’t able to pay the Direct Debit. This is almost always due to insufficient funds, but is occasionally used as a catch-all for other failures.
	bank	refer_to_payer	ach	ACH_RETURN-R20
ACH_RETURN-R67
ACH_RETURN-R75	The payment failed but the reason for the failure was not provided, usually for regulatory reasons.
	bank	refer_to_payer	ach	ACH_RETURN-R08
ACH_RETURN-R23
ACH_RETURN-R29	The customer refused to accept this payment.
	bank	authorisation_disputed	ach	ACH_RETURN-R07	The customer claims that they asked you to cancel their mandate before you took the payment.
	bank	return_on_odfi_request	ach	ACH_RETURN-R06	This payment was charged back by the customer’s bank, because the customer disputed authorising the transaction.
	bank	authorisation_disputed	ach	ACH_RETURN-R06	This payment has been cancelled because the payer disputes authorising its mandate.
	bank	authorisation_disputed	ach	ACH_RETURN-R08
ACH_RETURN-R31	The customer has placed a stop on this payment and the authorisation has been cancelled. Please contact the customer to set up a new authorisation.
	bank	authorisation_disputed	ach	ACH_RETURN-R10
ACH_RETURN-R11	The customer disputes having authorised you to set up a mandate with them.
	bank	other	ach	ACH_RETURN-R24
ACH_RETURN-R29
ACH_RETURN-R81
ACH_RETURN-R83
ACH_RETURN-R84
ACH_RETURN-R85
ACH_RETURN-R17	There was an internal error processing this payment.
	bank	test_failure	sepa_core	TEST	GoCardless has marked this payment as failed in sandbox to enable testing of payment failure webhooks.
	bank	refer_to_payer	bacs	ARUDD-0	The customer’s bank wasn’t able to pay the Direct Debit. This is almost always due to insufficient funds, but is occasionally used as a catch-all for other failures.
	bank	mandate_cancelled	bacs	ARUDD-1	The customer cancelled the mandate at their bank before the payment could be collected.
	bank	bank_account_closed	bacs	ARUDD-2	This payment failed because the customer is deceased.
	bank	bank_account_transferred	bacs	ARUDD-3	Your customer’s mandate was transferred to a new bank account, but this payment was submitted to the old account. You may wish to retry the payment once you have received a transferred webhook for the corresponding mandate.
	bank	authorisation_disputed	bacs	ARUDD-4	The customer has disputed having been notified of this Direct Debit.
	bank	invalid_bank_details	bacs	ARUDD-5
ARUDD-Y
ARUDD-E	The account number was invalid. The mandate will also be cancelled or failed.
	bank	bank_account_closed	bacs	ARUDD-B	The customer closed their account before the payment could be taken. The mandate will also be cancelled or failed.
	bank	other	bacs	ARUDD-6	No mandate was setup for this payment. Some smaller banks require additional time to process mandates, and may not have processed this customer’s mandate yet, so you may wish to retry the payment.
	bank	authorisation_disputed	bacs	ARUDD-7	The customer has disputed that the amount taken differs from the amount they were notified of.
	bank	invalid_bank_details	sepa_core	AC01
BE06	The bank account specified does not exist. The mandate will also be cancelled.
	bank	bank_account_closed	sepa_core	AC04	The bank account for this payment has been closed. The mandate will also be cancelled.
	bank	direct_debit_not_enabled	sepa_core	AC06
AG01	The bank account for this payment does not support SEPA Direct Debit. The mandate will also be cancelled.
	bank	insufficient_funds	sepa_core	AM04	The customer’s account had insufficient funds to make this payment.
	bank	mandate_cancelled	sepa_core	MD01	The customer cancelled their mandate at their bank.
	bank	bank_account_closed	sepa_core	MD07	This payment failed because the customer is deceased.
	bank	refer_to_payer	sepa_core	MS03
RR04	The payment failed but the reason for the failure was not provided, usually for regulatory reasons.
	bank	refer_to_payer	sepa_core	MS02	The customer refused to accept this payment.
	bank	refer_to_payer	sepa_core	SL01	The payment failed due to a restriction on Direct Debit payments from the payer’s bank account.
	bank	other	becs	9	The customer’s bank refused to accept this payment, please refer to customer.
	bank	other	becs	2
7
8	There was an internal error processing this payment.
	bank	direct_debit_not_enabled	becs	2
7
8
9	The payment failed due to a restriction on Direct Debit payments from the payer’s bank account.
	bank	refer_to_payer	becs	6	The customer’s bank wasn’t able to pay the Direct Debit. This is almost always due to insufficient funds, but is occasionally used as a catch-all for other failures.
	bank	invalid_bank_details	becs	1
5	The account number was invalid. The mandate will also be cancelled or failed.
	bank	bank_account_closed	becs	3
4	The bank account for this payment has been closed. The mandate will also be cancelled.
	bank	invalid_bank_details	becs	DEN	The account number was invalid. The mandate will also be cancelled or failed.
	gocardless	other	becs	INT_ERR	There was an internal error processing this payment.
	bank	invalid_bank_details	becs	RC02	The bank account specified does not exist. The mandate will also be cancelled.
	bank	authorisation_disputed	becs	MD01	The customer disputes having authorised you to set up a mandate with them.
	bank	bank_account_closed	becs	AC04	The bank account for this payment has been closed. The mandate will also be cancelled.
	bank	bank_account_closed	becs	MD07	This payment failed because the customer is deceased.
	bank	invalid_bank_details	becs	AC01	The account number was invalid. The mandate will also be cancelled or failed.
	bank	refer_to_payer	becs	NARR	The customer’s bank wasn’t able to pay the Direct Debit. This is almost always due to insufficient funds, but is occasionally used as a catch-all for other failures.
	bank	other	pay_to	2
7
8	There was an internal error processing this payment.
	bank	invalid_bank_details	pay_to	1
5	The account number was invalid. The mandate will also be cancelled or failed.
	bank	bank_account_closed	pay_to	3
4	The bank account for this payment has been closed. The mandate will also be cancelled.
	bank	invalid_bank_details	pay_to	RC02	The bank account specified does not exist. The mandate will also be cancelled.
	bank	refer_to_payer	betalingsservice	PAYMENT_INFORMATION-0237	The customer refused to accept this payment.
	bank	mandate_cancelled	betalingsservice	PAYMENT_INFORMATION-0238	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	refer_to_payer	betalingsservice	INFORMATION_LIST-0282	The customer’s bank wasn’t able to pay the Direct Debit. This is almost always due to insufficient funds, but is occasionally used as a catch-all for other failures.
	bank	other	betalingsservice	INFORMATION_LIST-0253	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	invalid_bank_details	becs_nz	DISHONOUR-AC05
NEGATIVE_ACKNOWLEDGEMENT-AC05	The bank account specified does not exist. The mandate will also be cancelled.
	bank	bank_account_closed	becs_nz	DISHONOUR-AC04	The bank account for this payment has been closed. The mandate will also be cancelled.
	bank	mandate_cancelled	becs_nz	DISHONOUR-AG01	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	invalid_bank_details	becs_nz	DISHONOUR-AC03
NEGATIVE_ACKNOWLEDGEMENT-AC03	The bank account specified does not exist. The mandate will also be cancelled.
	bank	refer_to_payer	becs_nz	DISHONOUR-AM04
NEGATIVE_ACKNOWLEDGEMENT-AM04	The customer’s account had insufficient funds to make this payment.
	bank	refer_to_payer	becs_nz	DISHONOUR-MS01	The customer refused to accept this payment.
	bank	refer_to_payer	becs_nz	DISHONOUR-AM02	The payment failed due to a restriction on Direct Debit payments from the payer’s bank account.
	bank	refer_to_payer	pad	PAYMENT_STATUS_REPORT-901	The customer’s account had insufficient funds to make this payment.
	bank	invalid_bank_details	pad	PAYMENT_STATUS_REPORT-900
PAYMENT_STATUS_REPORT-902
PAYMENT_STATUS_REPORT-912
PAYMENT_STATUS_REPORT-1023
PAYMENT_STATUS_REPORT-2014
PAYMENT_STATUS_REPORT-2017
PAYMENT_STATUS_REPORT-2018
PAYMENT_STATUS_REPORT-2019
PAYMENT_STATUS_REPORT-2020
PAYMENT_STATUS_REPORT-0518
PAYMENT_STATUS_REPORT-2034
PAYMENT_STATUS_REPORT-0567
PAYMENT_STATUS_REPORT-0573	The account number was invalid. The mandate will also be cancelled or failed.
	bank	bank_account_closed	pad	PAYMENT_STATUS_REPORT-905	The bank account for this payment has been closed. The mandate will also be cancelled.
	bank	refer_to_payer	pad	PAYMENT_STATUS_REPORT-907
PAYMENT_STATUS_REPORT-911
PAYMENT_STATUS_REPORT-990	The payment failed due to a restriction on Direct Debit payments from the payer’s bank account.
	bank	bank_account_closed	pad	PAYMENT_STATUS_REPORT-910	This payment failed because the customer is deceased.
	bank	refer_to_payer	pad	PAYMENT_STATUS_REPORT-903
PAYMENT_STATUS_REPORT-908
PAYMENT_STATUS_REPORT-914	The customer’s bank wasn’t able to pay the Direct Debit. This is almost always due to insufficient funds, but is occasionally used as a catch-all for other failures.
	bank	other	pad	PAYMENT_STATUS_REPORT-909	The customer’s bank wasn’t able to pay the Direct Debit. This is almost always due to insufficient funds, but is occasionally used as a catch-all for other failures.
	bank	other	becs_nz	DISHONOUR-BE05	The customer disputes having authorised you to set up a mandate with them.
	bank	other	becs_nz	ACKNOWLEDGEMENT-FAILED	The payment failed but the reason for the failure was not provided, usually for regulatory reasons.
	bank	other	faster_payments	FAILED	The payment failed but the reason for the failure was not provided, usually for regulatory reasons.
	bank	insufficient_funds	faster_payments	FAILED	The customer’s account had insufficient funds to make this payment.
	bank	payment_violated_mandate_parameters	faster_payments	FAILED	The payment failed due to a violation of the associated mandate consent parameters.
	bank	other	sepa_credit_transfer	FAILED	The payment failed but the reason for the failure was not provided, usually for regulatory reasons.
	bank	insufficient_funds	sepa_credit_transfer	FAILED	The customer’s account had insufficient funds to make this payment.
	bank	other	sepa_instant_credit_transfer	FAILED	The payment failed but the reason for the failure was not provided, usually for regulatory reasons.
	bank	insufficient_funds	sepa_instant_credit_transfer	FAILED	The customer’s account had insufficient funds to make this payment.
	bank	other	pay_to	FAILED	The payment failed but the reason for the failure was not provided, usually for regulatory reasons.
	bank	insufficient_funds	pay_to	FAILED	The customer’s account had insufficient funds to make this payment.

charged_back

The customer asked their bank to refund the payment under the Direct Debit Guarantee, and it has been returned to the customer.

	Origin	Cause	Scheme	Reason code	Description
	bank	authorisation_disputed	ach	ACH_RETURN-R05
ACH_RETURN-R31	This payment was charged back by the customer’s bank, because the customer disputed authorising the transaction.
	bank	refund_requested	ach	ACH_RETURN-R16	This payment was charged back by the customer’s bank at the customer’s request within the 8 week cool-off period.
	bank	mandate_cancelled	ach	ACH_RETURN-R07	This payment was charged back because the mandate was withdrawn.
	bank	authorisation_disputed	ach	ACH_RETURN-R08
ACH_RETURN-R10
ACH_RETURN-R11
ACH_RETURN-R29	The customer disputes having authorised you to set up a mandate with them.
	bank	return_on_odfi_request	ach	ACH_RETURN-R06	This payment was charged back by the customer’s bank, because the customer disputed authorising the transaction.
	bank	authorisation_disputed	bacs	DDICA-1	The customer has disputed that the amount taken differs from the amount they were notified of.
	bank	authorisation_disputed	bacs	DDICA-2	The customer has disputed having been notified of this Direct Debit.
	bank	authorisation_disputed	bacs	DDICA-4	The customer claims that they asked you to cancel their mandate before you took the payment.
	bank	authorisation_disputed	bacs	DDICA-5
DDICA-6
DDICA-8	The customer disputes having authorised you to set up a mandate with them.
	bank	mandate_cancelled	sepa_core	MD01	This payment was charged back by the customer’s bank, because the customer disputed authorising the transaction.
	bank	refund_requested	sepa_core	MD06	This payment was charged back by the customer’s bank at the customer’s request within the 8 week cool-off period.
	bank	refund_requested	betalingsservice	PAYMENT_INFORMATION-0239	This payment was charged back by the customer’s bank at the customer’s request within the 8 week cool-off period.
	bank	authorisation_disputed	becs	UDU
NAUT	The customer disputes having authorised you to set up a mandate with them.
	bank	mandate_cancelled	becs	CBC	The customer cancelled their mandate at their bank.
	bank	other	becs	UCDU
OTHR	The payment was charged back.
	bank	authorisation_disputed	becs	MD01	The customer disputes having authorised you to set up a mandate with them.
	bank	authorisation_disputed	pad	PAYMENT_STATUS_REPORT-915	The customer disputes having authorised you to set up a mandate with them.
	bank	other	pad	PAYMENT_STATUS_REPORT-916
PAYMENT_STATUS_REPORT-919	The customer has disputed that the amount taken differs from the amount they were notified of.
	bank	other	pad	PAYMENT_STATUS_REPORT-918
PAYMENT_STATUS_REPORT-921	The customer has disputed having been notified of this Direct Debit.
	bank	mandate_cancelled	pad	PAYMENT_STATUS_REPORT-917
PAYMENT_STATUS_REPORT-920	This payment was charged back because the mandate was withdrawn.

cancelled

The payment was cancelled.

	Origin	Cause	Scheme	Reason code	Description
	bank	bank_account_closed	ach	ACH_RETURN-R14
ACH_RETURN-R15	This payment was cancelled because the customer is deceased.
	bank	refer_to_payer	ach	ACH_RETURN-C01
ACH_RETURN-C02
ACH_RETURN-C03
ACH_RETURN-C05
ACH_RETURN-C06
ACH_RETURN-C07
ACH_RETURN-R08
ACH_RETURN-R26
NOTIFICATION_OF_CHANGE-C01
NOTIFICATION_OF_CHANGE-C02
NOTIFICATION_OF_CHANGE-C03
NOTIFICATION_OF_CHANGE-C05
NOTIFICATION_OF_CHANGE-C06
NOTIFICATION_OF_CHANGE-C07
NOTIFICATION_OF_CHANGE-C08
NOTIFICATION_OF_CHANGE-C09
NOTIFICATION_OF_CHANGE-R08	This payment has been cancelled because the bank details for its mandate are incorrect.
	bank	bank_account_closed	ach	ACH_RETURN-R02
ACH_RETURN-R12	This payment has been cancelled because the bank account it was going to be taken from has been closed.
	bank	invalid_bank_details	ach	ACH_RETURN-R03
ACH_RETURN-R04
ACH_RETURN-R13
ACH_RETURN-R26
ACH_RETURN-R28
ACH_RETURN-R82	This payment has been cancelled because the bank details for its mandate are incorrect.
	bank	refer_to_payer	ach	ACH_RETURN-R20
ACH_RETURN-R34	This payment has been cancelled because the bank account it was going to be taken from does not support Direct Debit.
	bank	authorisation_disputed	ach	ACH_RETURN-R05
ACH_RETURN-R06
ACH_RETURN-R08
ACH_RETURN-R10
ACH_RETURN-R11
ACH_RETURN-R29
ACH_RETURN-R31
ACH_RETURN-R51	This payment has been cancelled because the payer disputes authorising its mandate.
	bank	refer_to_payer	ach	ACH_RETURN-R29	This payment has been cancelled because its mandate was cancelled.
	bank	mandate_cancelled	ach	ACH_RETURN-R07
ACH_RETURN-R06	This payment has been cancelled because its mandate was cancelled.
	bank	other	ach	ACH_RETURN-R85	There was an internal error processing this payment.
	gocardless	instalment_schedule_cancelled	-	-	payment_cancelled_at_request
	api	payment_cancelled	-	-	This payment was cancelled at your request.
	api	mandate_cancelled	-	-	The mandate for this payment was cancelled at your request.
	api	instalment_schedule_cancelled	-	-	payment_cancelled_at_request
	api	bank_account_closed	-	-	The bank account for this payment was disabled at your request.
	bank	mandate_cancelled	bacs	ADDACS-0
ADDACS-1	The mandate for this payment was cancelled at a bank branch.
	bank	bank_account_closed	bacs	ADDACS-2
ADDACS-B	The mandate for this payment was cancelled as the customer’s bank account has been closed.
	bank	bank_account_transferred	bacs	ADDACS-3
ADDACS-C	The mandate for this payment was cancelled as the customer asked their bank to transfer the mandate to a new account, but the bank has failed to send GoCardless the new bank details.
	bank	authorisation_disputed	bacs	ADDACS-D	The customer disputes authorising this mandate.
	bank	bank_account_closed	bacs	ARUDD-2	This payment was cancelled because the customer is deceased.
	bank	bank_account_closed	bacs	ARUDD-B	This payment was cancelled because the customer closed their bank account before it could be collected.
	bank	refer_to_payer	bacs	ARUDD-6	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	invalid_bank_details	sepa_core	AC01
BE06	This payment has been cancelled because the bank details for its mandate are incorrect.
	bank	bank_account_closed	sepa_core	AC04
MD07	This payment has been cancelled because the bank account it was going to be taken from has been closed.
	bank	direct_debit_not_enabled	sepa_core	AC06
AG01	This payment has been cancelled because the bank account it was going to be taken from does not support Direct Debit.
	bank	authorisation_disputed	sepa_core	MD01	This payment has been cancelled because the payer disputes authorising its mandate.
	bank	mandate_cancelled	sepa_core	MD01	This payment has been cancelled because the payer disputes authorising its mandate.
	bank	authorisation_disputed	bacs	DDICA-4
DDICA-5
DDICA-6	This payment has been cancelled because the customer disputes authorising its mandate.
	bank	bank_account_closed	bacs	AUDDIS-2
AUDDIS-B	This payment has been cancelled because the bank account it was going to be taken from has been closed.
	bank	invalid_bank_details	bacs	AUDDIS-5	This payment has been cancelled because the bank details for its mandate are not valid.
	bank	bank_account_transferred	bacs	AUDDIS-3
AUDDIS-C	This payment has been cancelled because the customer requested their bank transfer their Direct Debit to a new account but the bank did not send GoCardless the new bank details.
	bank	direct_debit_not_enabled	bacs	AUDDIS-F
AUDDIS-G
AUDDIS-N	This payment has been cancelled because the bank account for its mandate does not support Direct Debit.
	bank	invalid_bank_details	bacs	ARUDD-5
ARUDD-E
ARUDD-Y	This payment has been cancelled because the bank details for its mandate are not valid.
	bank	mandate_cancelled	bacs	ARUDD-1	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	mandate_cancelled	betalingsservice	PAYMENT_INFORMATION-0238	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	mandate_cancelled	betalingsservice	MANDATE_INFORMATION-0232
MANDATE_INFORMATION-0233
MANDATE_INFORMATION-0234	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	mandate_cancelled	betalingsservice	INFORMATION_LIST-0253
INFORMATION_LIST-0257	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	invalid_bank_details	becs_nz	DISHONOUR-AC03	This payment has been cancelled because the customer requested their bank transfer their Direct Debit to a new account but the bank did not send GoCardless the new bank details.
	bank	refer_to_payer	becs_nz	DISHONOUR-MS01	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	bank_account_closed	becs_nz	DISHONOUR-AC04	The bank account for this payment has been closed. The mandate will also be cancelled.
	bank	invalid_bank_details	becs_nz	DISHONOUR-AC05
NEGATIVE_ACKNOWLEDGEMENT-AC05	The bank account specified does not exist. The mandate will also be cancelled.
	bank	mandate_cancelled	becs_nz	DISHONOUR-AG01	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	other	becs_nz	DISHONOUR-BE05	The customer disputes having authorised you to set up a mandate with them.
	bank	invalid_bank_details	pad	PAYMENT_STATUS_REPORT-900
PAYMENT_STATUS_REPORT-902
PAYMENT_STATUS_REPORT-912
PAYMENT_STATUS_REPORT-1023
PAYMENT_STATUS_REPORT-2014
PAYMENT_STATUS_REPORT-2017
PAYMENT_STATUS_REPORT-2018
PAYMENT_STATUS_REPORT-2019
PAYMENT_STATUS_REPORT-2020
PAYMENT_STATUS_REPORT-2034
PAYMENT_STATUS_REPORT-0518
PAYMENT_STATUS_REPORT-0567	This payment has been cancelled because the bank details for its mandate are incorrect.
	bank	bank_account_closed	pad	PAYMENT_STATUS_REPORT-905	This payment has been cancelled because the bank account it was going to be taken from has been closed.
	bank	bank_account_closed	pad	PAYMENT_STATUS_REPORT-910	This payment was cancelled because the customer is deceased.
	bank	other	pad	PAYMENT_STATUS_REPORT-918
PAYMENT_STATUS_REPORT-921	This payment has been cancelled because the customer disputes authorising its mandate.
	bank	authorisation_disputed	pad	PAYMENT_STATUS_REPORT-915	This payment has been cancelled because the customer disputes authorising its mandate.
	bank	mandate_cancelled	pad	PAYMENT_STATUS_REPORT-917
PAYMENT_STATUS_REPORT-920	This mandate was cancelled by the customer or their bank.
	bank	invalid_bank_details	becs	1
5	This payment has been cancelled because the bank details for its mandate are incorrect.
	bank	direct_debit_not_enabled	becs	2	This payment has been cancelled because the bank account for its mandate does not support Direct Debit.
	bank	bank_account_closed	becs	3	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	bank_account_closed	becs	4	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	invalid_bank_details	becs	DEN	This payment has been cancelled because the bank details for its mandate are incorrect.
	bank	other	becs	7
8
9	An error was received from the banks while setting up the mandate for this payment.
	bank	authorisation_disputed	becs	UDU
NAUT	The customer disputes having authorised you to set up a mandate with them.
	bank	mandate_cancelled	becs	CBC	This payment has been cancelled because its mandate was cancelled.
	bank	invalid_bank_details	becs	RC02	This payment has been cancelled because the bank details for its mandate are incorrect.
	bank	authorisation_disputed	becs	MD01	This payment has been cancelled because the customer disputes authorising its mandate.
	bank	bank_account_closed	becs	AC04	This payment has been cancelled because the bank account it was going to be taken from has been closed.
	bank	bank_account_closed	becs	MD07	This payment was cancelled because the customer is deceased.
	bank	invalid_bank_details	becs	AC01	This payment has been cancelled because the bank details for its mandate are incorrect.
	bank	refer_to_payer	becs	NARR	The customer’s bank wasn’t able to pay the Direct Debit. This is almost always due to insufficient funds, but is occasionally used as a catch-all for other failures.
	bank	invalid_bank_details	pay_to	1
5	This payment has been cancelled because the bank details for its mandate are incorrect.
	bank	bank_account_closed	pay_to	3	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	invalid_bank_details	pay_to	DEN	This payment has been cancelled because the bank details for its mandate are incorrect.
	gocardless	mandate_expired	-	-	The mandate expired before the payment could be collected.
	bank	refer_to_payer	pad	PAYMENT_STATUS_REPORT-903
PAYMENT_STATUS_REPORT-908
PAYMENT_STATUS_REPORT-914	The customer’s bank wasn’t able to pay the Direct Debit. This is almost always due to insufficient funds, but is occasionally used as a catch-all for other failures.
	bank	mandate_cancelled	faster_payments	PAYER_MANDATE_CANCELLED	This payment was canceled because the customer cancelled the mandate at their bank.
	bank	mandate_suspended_by_payer	pay_to	SBP	The mandate for this payment was suspended by the payer.
	gocardless	mandate_cancelled	faster_payments	MERCHANT_MANDATE_CANCELLED	The mandate for this payment was cancelled at your request.
	gocardless	mandate_cancelled	faster_payments	MANDATE_EXPIRED	The mandate expired before the payment could be collected.
	bank	return_on_odfi_request	ach	ACH_RETURN-R06	The payment was cancelled because of an ODFI return request.

resubmission_requested

A request to resubmit the payment was made by the payment retry endpoint. This can also mean that the payment was automatically scheduled for resubmission by GoCardless, if you have opted in for the intelligent retries feature.

	Origin	Cause	Description
	api	payment_retried	An attempt to retry this payment was requested.
	gocardless	payment_autoretried	The payment was scheduled for resubmission automatically by GoCardless.

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV1234 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payments",
 "action": "failed",
 "details": {
 "origin": "bank",
 "cause": "insufficient_funds",
 "description": "The customer's account had insufficient funds to make this payment.",
 "scheme": "sepa_core",
 "reason_code": "AM04",
 "will_attempt_retry": false
 },
 "metadata": {},
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "payment": "PM123"
 }
 }
}

GET https://api.gocardless.com/events/EV4567 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV4567",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payments",
 "action": "cancelled",
 "details": {
 "origin": "bank",
 "cause": "mandate_cancelled",
 "description": "The mandate for this payment was cancelled as the customer's bank account has been closed.",
 "scheme": "bacs",
 "reason_code": "ADDACS-B"
 },
 "metadata": {},
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "payment": "PM456",
 "parent_event": "EV789"
 }
 }
}

GET https://api.gocardless.com/events/EV8901 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV8901",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payments",
 "action": "cancelled",
 "details": {
 "origin": "api",
 "cause": "payment_cancelled",
 "description": "Payment cancelled."
 },
 "metadata": {
 "cancellor_id": "some_id"
 },
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "payment": "PM789"
 }
 }
}

GET https://api.gocardless.com/events/EV2345 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV2345",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payments",
 "action": "confirmed",
 "details": {
 "origin": "gocardless",
 "cause": "payment_confirmed",
 "description": "Payment confirmed"
 },
 "metadata": {},
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "payment": "PM999"
 }
 }
}

 Payout

This is a list of all the different values for action

paid

GoCardless has transferred the payout to the creditor’s bank account. The details[cause] will always be payout_paid, and the details[origin] will be gocardless.

	Origin	Cause	Description
	gocardless	payout_paid	GoCardless has transferred the payout to the creditor’s bank account. FX payouts will emit this event but will continue to have a pending status until we emit the payout_fx_rate_confirmed event.

fx_rate_confirmed

The exchange rate for the payout has been confirmed and will not change.

	Origin	Cause	Description
	gocardless	payout_fx_rate_confirmed	The exchange rate for the payout has been confirmed and will not change. Only sent for FX payouts.

tax_exchange_rates_confirmed

The tax exchange rates for all payout items of the payout have been confirmed. This event will only exist if the payout has a tax_currency and if its tax_currency is different from its currency. It will be created once all fees in the payout are invoiced.

	Origin	Cause	Description
	gocardless	payout_tax_exchange_rates_confirmed	The exchange rates for the taxes (such as VAT) that applied to GoCardless fees deducted from the payout have all been confirmed and will not change.

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payouts",
 "action": "paid",
 "details": {
 "origin": "gocardless",
 "cause": "payout_paid",
 "description": "Payout sent"
 },
 "metadata": {},
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "payout": "PO123"
 }
 }
}

 Refund

This is a list of all the different values for action

created

A refund has been created. The details[cause] will be payment_refunded, and the details[origin] will be api.

	Origin	Cause	Description
	api	payment_refunded	The refund has been created, and will be submitted in the next batch.
	api	refund_created	The refund has been created, and will be submitted in the next batch.

failed

The refund did not reach your customer, the funds will be returned to you. The details[cause] will be refund_failed, and the details[origin] will be gocardless. It is important to note that the ‘failed’ and ‘refund_settled’ events are not associated. A refund can fail even after it’s been settled. If a refund fails, GoCardless has attempted to refund the customer and has already deducted the applicable funds from one of your payouts. The refund has then subsequently failed to reach the customer. If this occurs, the funds will be returned to you.

	Origin	Cause	Description
	gocardless	refund_failed	The refund did not reach your customer, the funds will be returned to you.

paid

The refund has been paid to your customer. The details[cause] will be refund_paid, and the details[origin] will be gocardless.

	Origin	Cause	Description
	gocardless	refund_paid	The refund has been paid to your customer.

refund_settled

The refund has been deducted from a payout. The details[cause] will be refund_settled, and the details[origin] will be gocardless.

	Origin	Cause	Description
	gocardless	refund_settled	The refund has been deducted from a payout.

funds_returned

The refund has been credited in a payout. The details[cause] will be refund_funds_returned, and the details[origin] will be gocardless.

	Origin	Cause	Description
	gocardless	refund_funds_returned	The funds for the refund have been returned to you.

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "refunds",
 "action": "created",
 "details": {
 "origin": "api",
 "cause": "payment_refunded",
 "description": "The refund has been created, and will be submitted in the next batch."
 },
 "metadata": {},
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 },
 "links": {
 "refund": "RF123"
 }
 }
}

 Scheme Identifier

This is a list of all the different values for action

activated

This scheme identifier has been activated.

	Origin	Cause	Description
	gocardless	scheme_identifier_activated	This scheme identifier has been activated.

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2023-04-08T17:01:06.000Z",
 "resource_type": "scheme_identifiers",
 "action": "activated",
 "links": {
 "scheme_identifier": "SU222",
 },
 "details": {
 "origin": "gocardless",
 "cause": "scheme_identifier_activated",
 "description": "This scheme identifier has been activated."
 },
 "metadata": {}
 }
}

 Subscription

This is a list of all the different values for action

created

The subscription has been created.

	Origin	Cause	Description
	api	subscription_created	Subscription created via the API.

customer_approval_granted

The subscription required additional approval from the customer before it could become active, and that approval has been granted.

	Origin	Cause	Description
	customer	customer_approval_granted	The customer granted approval for this subscription

customer_approval_denied

The subscription required additional approval from the customer before it could become active, and that approval has been denied.

	Origin	Cause	Description
	customer	customer_approval_denied	The customer denied approval for this subscription

amended

The subscription amount has been changed.

	Origin	Cause	Description
	api	subscription_amended	Subscription amount has been amended.

payment_created

A payment has been created by this subscription.

	Origin	Cause	Description
	gocardless	payment_created	Payment created by a subscription.

cancelled

This subscription has been cancelled. No further payments will be created.

	Origin	Cause	Scheme	Reason code	Description
	bank	bank_account_closed	ach	ACH_RETURN-R14
ACH_RETURN-R15	This subscription was cancelled because the customer is deceased.
	bank	return_on_odfi_request	ach	ACH_RETURN-R06	This subscription has been cancelled because its mandate was cancelled.
	bank	refer_to_payer	ach	ACH_RETURN-C01
ACH_RETURN-C02
ACH_RETURN-C03
ACH_RETURN-C05
ACH_RETURN-C06
ACH_RETURN-C07
ACH_RETURN-R08
NOTIFICATION_OF_CHANGE-C01
NOTIFICATION_OF_CHANGE-C02
NOTIFICATION_OF_CHANGE-C03
NOTIFICATION_OF_CHANGE-C05
NOTIFICATION_OF_CHANGE-C06
NOTIFICATION_OF_CHANGE-C07
NOTIFICATION_OF_CHANGE-R08	This subscription has been cancelled because the bank details for its mandate are incorrect.
	bank	bank_account_closed	ach	ACH_RETURN-R02
ACH_RETURN-R12	This subscription has been cancelled because the bank account it was going to be taken from has been closed.
	bank	mandate_cancelled	ach	ACH_RETURN-R07	This subscription was canceled because the customer cancelled the mandate at their bank.
	bank	mandate_cancelled	ach	ACH_RETURN-R10	This subscription has been cancelled because the bank details for its mandate are incorrect.
	bank	invalid_bank_details	ach	ACH_RETURN-R03
ACH_RETURN-R04
ACH_RETURN-R13
ACH_RETURN-R28
ACH_RETURN-R82	This subscription has been cancelled because the bank details for its mandate are incorrect.
	bank	direct_debit_not_enabled	ach	ACH_RETURN-R16
ACH_RETURN-R20
ACH_RETURN-R34	This subscription has been cancelled because the bank account it was going to be taken from does not support direct debit.
	bank	refer_to_payer	ach	ACH_RETURN-R20
ACH_RETURN-R29	This subscription has been cancelled because its mandate was cancelled.
	bank	authorisation_disputed	ach	ACH_RETURN-R05
ACH_RETURN-R08
ACH_RETURN-R10
ACH_RETURN-R11
ACH_RETURN-R29
ACH_RETURN-R31
ACH_RETURN-R51	This subscription has been cancelled because the customer disputes authorising its mandate.
	api	subscription_cancelled	-	-	The subscription has been cancelled at your request.
	api	mandate_cancelled	-	-	The subscription was cancelled because its mandate was cancelled at your request.
	api	bank_account_closed	-	-	The mandate for this subscription was cancelled at your request.
	gocardless	mandate_expired	-	-	The subscription was cancelled because its mandate has expired.
	bank	mandate_cancelled	bacs	ADDACS-0
ADDACS-1	The mandate for this subscription was cancelled at a bank branch.
	bank	bank_account_closed	bacs	ADDACS-2
ADDACS-B	The mandate for this subscription was cancelled as the customer’s bank account has been closed.
	bank	bank_account_transferred	bacs	ADDACS-3
ADDACS-C	The mandate for this subscription was cancelled as the customer asked their bank to transfer the mandate to a new account, but the bank has failed to send GoCardless the new bank details.
	bank	authorisation_disputed	bacs	ADDACS-D	The customer disputes authorising this mandate.
	bank	bank_account_closed	bacs	ARUDD-2	This subscription was cancelled because the customer is deceased.
	bank	refer_to_payer	bacs	ARUDD-6	An error was received from the banks while setting up the mandate for this subscription.
	bank	bank_account_closed	bacs	ARUDD-B	This subscription was cancelled because the customer closed their bank account before it could be collected.
	bank	invalid_bank_details	sepa_core	AC01
BE06	This subscription has been cancelled because the bank details for its mandate are incorrect.
	bank	bank_account_closed	sepa_core	AC04
MD07	This subscription has been cancelled because the bank account it was going to be taken from has been closed.
	bank	direct_debit_not_enabled	sepa_core	AC06
AG01	This subscription has been cancelled because the bank account it was going to be taken from does not support direct debit.
	bank	authorisation_disputed	sepa_core	MD01	This subscription has been cancelled because the payer disputes authorising its mandate.
	bank	mandate_cancelled	sepa_core	MD01	This subscription has been cancelled because the payer disputes authorising its mandate.
	bank	authorisation_disputed	bacs	DDICA-3
DDICA-4
DDICA-5
DDICA-6
DDICA-8	This subscription has been cancelled because the customer disputes authorising its mandate.
	bank	bank_account_closed	bacs	AUDDIS-2
AUDDIS-B	This subscription has been cancelled because the bank account for its mandate has been closed.
	bank	invalid_bank_details	bacs	AUDDIS-5	This subscription has been cancelled because the bank details for its mandate are not valid.
	bank	bank_account_transferred	bacs	AUDDIS-3
AUDDIS-C	This subscription has been cancelled because the customer has requested for direct debits to be taken from a new account, but their bank did not send GoCardless the new bank details.
	bank	direct_debit_not_enabled	bacs	AUDDIS-F
AUDDIS-G
AUDDIS-N	This subscription has been cancelled because the bank account for its mandate does not support direct debit.
	bank	invalid_bank_details	bacs	ARUDD-5
ARUDD-Y
ARUDD-E	This subscription has been cancelled because the bank details for its mandate are not valid.
	bank	mandate_cancelled	bacs	ARUDD-1	This subscription was canceled because the customer cancelled the mandate at their bank.
	api	plan_cancelled	-	-	The subscription has been cancelled because the associated plan was cancelled.
	bank	authorisation_disputed	becs	UDU
NAUT	This subscription has been cancelled because the customer disputes authorising its mandate.
	bank	mandate_cancelled	becs	CBC	This subscription has been cancelled because its mandate was cancelled.
	bank	direct_debit_not_enabled	becs	2	This subscription has been cancelled because the bank account for its mandate does not support direct debit.
	bank	bank_account_closed	becs	4	This subscription was cancelled because the customer is deceased.
	bank	invalid_bank_details	becs	DEN	This subscription has been cancelled because the bank details for its mandate are not valid.
	bank	bank_account_closed	becs_nz	DISHONOUR-AC04	This subscription has been cancelled because the bank account it was going to be taken from has been closed.
	bank	invalid_bank_details	pad	PAYMENT_STATUS_REPORT-900
PAYMENT_STATUS_REPORT-902
PAYMENT_STATUS_REPORT-912
PAYMENT_STATUS_REPORT-1023
PAYMENT_STATUS_REPORT-2014
PAYMENT_STATUS_REPORT-2017
PAYMENT_STATUS_REPORT-2018
PAYMENT_STATUS_REPORT-2019
PAYMENT_STATUS_REPORT-2020
PAYMENT_STATUS_REPORT-2034
PAYMENT_STATUS_REPORT-0518
PAYMENT_STATUS_REPORT-0567	This subscription has been cancelled because the bank details for its mandate are not valid.
	bank	bank_account_closed	pad	PAYMENT_STATUS_REPORT-905	This subscription has been cancelled because the bank account for its mandate has been closed.
	bank	direct_debit_not_enabled	pad	PAYMENT_STATUS_REPORT-907	This subscription has been cancelled because the bank account for its mandate does not support direct debit.
	bank	bank_account_closed	pad	PAYMENT_STATUS_REPORT-910	This subscription was cancelled because the customer is deceased.
	bank	authorisation_disputed	pad	PAYMENT_STATUS_REPORT-915	This subscription has been cancelled because the customer disputes authorising its mandate.
	bank	other	pad	PAYMENT_STATUS_REPORT-914	An error was received from the banks while setting up the mandate for this subscription.
	bank	refer_to_payer	pad	PAYMENT_STATUS_REPORT-914	An error was received from the banks while setting up the mandate for this subscription.
	bank	mandate_cancelled	pad	PAYMENT_STATUS_REPORT-917
PAYMENT_STATUS_REPORT-920	This subscription has been cancelled because its mandate was cancelled.
	bank	mandate_cancelled	faster_payments	PAYER_MANDATE_CANCELLED	This subscription has been cancelled because its mandate was cancelled.
	bank	mandate_suspended_by_payer	pay_to	SBP	The subscription has been cancelled because its mandate was suspended by payer.
	gocardless	mandate_cancelled	faster_payments	MERCHANT_MANDATE_CANCELLED	The mandate for this subscription was cancelled at your request.
	gocardless	mandate_cancelled	faster_payments	MANDATE_EXPIRED	The subscription was cancelled because its mandate has expired.

finished

This subscription has finished. No further payments will be created.

	Origin	Cause	Description
	gocardless	subscription_finished	The subscription has finished.

paused

This subscription has been paused.

	Origin	Cause	Description
	api	subscription_paused	The subscription has been paused.
	gocardless	subscription_paused	The subscription has been paused.

resumed

This subscription was resumed.

	Origin	Cause	Description
	api	subscription_resumed	The subscription was resumed.
	gocardless	subscription_resumed	The subscription was resumed.

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "subscriptions",
 "action": "payment_created",
 "links": {
 "subscription": "SB123",
 "payment": "PM123"
 },
 "details": {
 "origin": "api",
 "cause": "payment_created",
 "description": "Payment created by a subscription."
 },
 "metadata": {},
 "resource_metadata": {
 "order_dispatch_date": "2014-05-22"
 }
 }
}

 Success+

 Intelligent Retries

Intelligent retries is a feature which automatically retries payments if they fail.

 Important: To be able to use intelligent retries,
 Success+ needs to be enabled in Gocardless Dashboard.

 Enabling Intelligent Retries

 Individual Payments

Creating Payment

When creating a payment set retry_if_possible to true
This will enable intelligent retries if the payment is considered eligible.

Updating Payment

If a payment has been created with retry_if_possible set to true, then it can be updated to
false. This will prevent the payment being automatically retried in the event of a failure.

The API currently only allows the flag to be updated to false. Hence for a payment which
has been already created it is not allowed to set this flag to true.

 HTTP

 HTTP
 POST https://api.gocardless.com/payments HTTP/1.1
Content-Type: application/json
{
 "payments": {
 "amount": 100,
 "currency": "GBP",
 "retry_if_possible": true,
 ...
 }
}

PUT https://api.gocardless.com/payments/PM123 HTTP/1.1
Content-Type: application/json
{
 "payments": {
 "retry_if_possible": false
 }
}

 Instalment Schedules

When creating an instalment schedule set retry_if_possible to true to ensure that all instalment payments created are automatically retried upon failure.

 HTTP

 HTTP
 POST https://api.gocardless.com/instalment_schedules HTTP/1.1
Content-Type: application/json
{
 "instalment_schedules": {
 "name": "Bike Invoice 271",
 "total_amount": "2500",
 "currency": "GBP",
 "retry_if_possible": true,
 ...
}

 Subscriptions

When creating a subscription set retry_if_possible to true to ensure that all payments created for the subscription are retried automatically upon failure.

 HTTP

 HTTP
 POST https://api.gocardless.com/subscriptions HTTP/1.1
Content-Type: application/json
{
 "subscriptions": {
 "amount": "2500",
 "currency": "GBP",
 "interval_unit": "monthly",
 "retry_if_possible": true,
 ...
}

 Handling Failures

On payment failure the failed event will always be sent. If the payment will be automatically retried the field will_attempt_retry will be true.

When a payment is automatically retried it will trigger a resubmission_requested event just like any other type of retry.

 When will_attempt_retry is true, GoCardless will automatically retry the payment. Please do not attempt to collect the payment from the customer yourself, as this can lead to them being double charged.

 HTTP

 HTTP
 GET https://api.gocardless.com/events/EV123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "events": {
 "id": "EV123",
 "created_at": "2014-04-08T17:01:06.000Z",
 "resource_type": "payments",
 "action": "failed",
 "details": {
 "origin": "bank",
 "cause": "insufficient_funds",
 "description": "The customer's account had insufficient funds to make this payment.",
 "scheme": "sepa_core",
 "reason_code": "AM04",
 "will_attempt_retry": true
 },
 "metadata": {},
 "links": {
 "payment": "PM123"
 }
 }
}

 Retry Rules

 The criteria below are subject to change and should not be relied upon.
 Use the will_attempt_retry field above
 to know for sure if a payment will be retried.

The retry_if_possible field does not guarantee the payment will be retried on failure.
A payment will be retried if the following conditions are met:

	Intelligent retries for the scheme has been enabled on the settings page.
	The payment has field retry_if_possible set to true.
	The payment has failed due to insufficient funds.
	The number of payment failures is lesser than the number of retries configured in the intelligent retries settings page.
	The subsequent retry can be confirmed within the retry window configured in the intelligent retries settings page.

 Helper Endpoints

 Healthcheck

We expose a health check endpoint which can be used to test connections to our API.
Requests to this endpoint do not require authorization and are not rate limited.
This endpoint will return a 200 response while our API is available.

	
https://api.gocardless.com/health_check for live
	
https://api-sandbox.gocardless.com/health_check for sandbox

 Bank Details Lookups

Look up the name and reachability of a bank account.

Properties

	available_debit_schemes
	Array of schemes supported for this bank account. This will be an empty array if the bank account is not reachable by any schemes.
	bank_name
	The name of the bank with which the account is held (if available).
	bic
	ISO 9362 SWIFT BIC of the bank with which the account is held.

 Even if no BIC is returned for an account, GoCardless may still be able to collect payments from it - you should refer to the available_debit_schemes attribute to determine reachability.

 Perform a bank details lookup

Performs a bank details lookup. As part of the lookup, a modulus check and
reachability check are performed.

If your request returns an error or the available_debit_schemes
attribute is an empty array, you will not be able to collect payments from the
specified bank account. GoCardless may be able to collect payments from an account
even if no bic is returned.

Bank account details may be supplied using local details or an IBAN.

ACH scheme For compliance reasons, an extra validation step is done using
a third-party provider to make sure the customer’s bank account can accept
Direct Debit. If a bank account is discovered to be closed or invalid, the
customer is requested to adjust the account number/routing number and
succeed in this check to continue with the flow.

Note: Usage of this endpoint is monitored. If your organisation relies on GoCardless for
modulus or reachability checking but not for payment collection, please get in touch.

Relative endpoint: POST /bank_details_lookups

Parameters

	account_number
	Bank account number - see local details for more information. Alternatively you can provide an iban.
	bank_code
	Bank code - see local details for more information. Alternatively you can provide an iban.
	branch_code
	Branch code - see local details for more information. Alternatively you can provide an iban.
	country_code
	
ISO 3166-1 alpha-2 code. Must be provided if specifying local details.
	iban
	International Bank Account Number. Alternatively you can provide local details.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/bank_details_lookups HTTP/1.1
Content-Type: application/json
{
 "bank_details_lookups": {
 "account_number": "55779911",
 "branch_code": "200000",
 "country_code": "GB"
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "bank_details_lookups": {
 "available_debit_schemes": ["bacs"],
 "bank_name": "BARCLAYS BANK PLC",
 "bic": "BARCGB22XXX"
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->bankDetailsLookups()->create([
 "params" => ["account_number" => "55779911",
 "branch_code" => "200000",
 "country_code" => "GB"]
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.bank_details_lookups.create(params={
 "account_number": "55779911",
 "branch_code": "200000",
 "country_code": "GB"
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.bank_details_lookups.create(
 params: {
 country_code: "GB",
 account_number: "55779911",
 branch_code: "200000"
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

BankDetailsLookup bankDetailsLookup = client.bankDetailsLookups().create()
 .withAccountNumber("55779911")
 .withBranchCode("200000")
 .withCountryCode("GB")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

const bankDetailsLookup = await client.bankDetailsLookups.create({
 account_number: "55779911",
 branch_code: "200000",
 country_code: "GB"
});

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var bankDetailsRequest = new GoCardless.Services.BankDetailsLookupCreateRequest()
{
 AccountNumber = "55779911",
 BranchCode = "200000",
 CountryCode = "GB"
};

var bankDetailsResponse = await gocardless.BankDetailsLookups.CreateAsync(bankDetailsRequest);
GoCardless.Resources.BankDetailsLookup bankDetails = bankDetailsResponse.BankDetailsLookup;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 bankDetailsLookupCreateParams := gocardless.BankDetailsLookupCreateParams{
 AccountNumber: "55779911",
 BranchCode: "200000",
 CountryCode: "GB",
 }

 bankDetailsLookup, err := client.BankDetailsLookups.Create(context, bankAuthorisationCreateParams)

}

 Mandate PDFs

Mandate PDFs allow you to easily display scheme-rules compliant Direct Debit mandates to your customers.

Properties

	expires_at
	The date and time at which the url will expire (10 minutes after the original request).
	url
	The URL at which this mandate PDF can be viewed until it expires at the date and time specified by expires_at. You should not store this URL or rely on its structure remaining the same.

 Create a mandate PDF

Generates a PDF mandate and returns its temporary URL.

Customer and bank account details can be left blank (for a blank mandate), provided manually, or inferred from the ID of an existing mandate.

By default, we’ll generate PDF mandates in English.

To generate a PDF mandate in another language, set the Accept-Language header when creating the PDF mandate to the relevant ISO 639-1 language code supported for the scheme.

	Scheme	Supported languages
	ACH	English (en)
	Autogiro	English (en), Swedish (sv)
	Bacs	English (en)
	BECS	English (en)
	BECS NZ	English (en)
	Betalingsservice	Danish (da), English (en)
	PAD	English (en)
	SEPA Core	Danish (da), Dutch (nl), English (en), French (fr), German (de), Italian (it), Portuguese (pt), Spanish (es), Swedish (sv)

Relative endpoint: POST /mandate_pdfs

Parameters

	account_holder_name
	Name of the account holder, as known by the bank. Usually this matches the name of the customer. This field cannot exceed 18 characters.
	account_number
	Bank account number - see local details for more information. Alternatively you can provide an iban.
	account_type
	Bank account type. Required for USD-denominated bank accounts. Must not be provided for bank accounts in other currencies. See local details for more information.
	address_line1
	The first line of the customer’s address.
	address_line2
	The second line of the customer’s address.
	address_line3
	The third line of the customer’s address.
	bank_code
	Bank code - see local details for more information. Alternatively you can provide an iban.
	bic
	SWIFT BIC. Will be derived automatically if a valid iban or local details are provided.
	branch_code
	Branch code - see local details for more information. Alternatively you can provide an iban.
	city
	The city of the customer’s address.
	country_code
	
ISO 3166-1 alpha-2 code. Required if providing local details.
	danish_identity_number
	For Danish customers only. The civic/company number (CPR or CVR) of the customer. Should only be supplied for Betalingsservice mandates.
	iban
	International Bank Account Number. Alternatively you can provide local details. IBANs cannot be provided for Autogiro mandates.
	mandate_reference
	Unique 6 to 18 character reference. This may be left blank at the point of signing.
	payer_ip_address
	For American customers only. IP address of the computer used by the customer to set up the mandate. This is required in order to create compliant Mandate PDFs according to the ACH scheme rules.
	phone_number
	The customer phone number. Should only be provided for BECS NZ mandates.
	postal_code
	The customer’s postal code.
	region
	The customer’s address region, county or department. For US customers a 2 letter ISO3166-2:US state code is required (e.g. CA for California).
	scheme
	Direct Debit scheme. Can be supplied or automatically detected from the bank account details provided. If you do not provide a scheme, you must provide either a mandate, an iban, or local details including a country_code.
	signature_date
	If provided, a form will be generated with this date and no signature field.
	subscription_amount
	For American customers only. Subscription amount being authorised by the mandate. In the lowest denomination for the currency (cents in USD). Is required if subscription_frequency has been provided.
	subscription_frequency
	For American customers only. Frequency of the subscription being authorised by the mandate. One of weekly, monthly or yearly. Is required if subscription_amount has been provided.
	swedish_identity_number
	For Swedish customers only. The civic/company number (personnummer, samordningsnummer, or organisationsnummer) of the customer. Should only be supplied for Autogiro mandates.
	links[mandate]
	ID of an existing mandate to build the PDF from. The customer’s bank details will be censored in the generated PDF. No other parameters may be provided alongside this.

 HTTP

 PHP

 Python

 Ruby

 Java

 JavaScript

 .NET

 Go

 HTTP
 POST https://api.gocardless.com/mandate_pdfs HTTP/1.1
Content-Type: application/json
{
 "mandate_pdfs": {
 "links": {
 "mandate": "MD123"
 }
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandate_pdfs": {
 "url": "https://mandate-previews.gocardless.com/?token=lhulxcPEbT9v3W0QUpBOxhlGUSYEayQQ4VVrpO7YnUKRYynP5",
 "expires_at": "2014-05-08T17:01:06.000Z"
 }
}

POST https://api.gocardless.com/mandate_pdfs HTTP/1.1
Content-Type: application/json
{
 "mandate_pdfs": {
 "account_number": "44779911",
 "branch_code": "200000",
 "country_code": "GB"
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandate_pdfs": {
 "url": "https://mandate-previews.gocardless.com/?token=vlaPBHzSvm1OPwDNatZYWJCM7XZcCUuLPn7m5XV5",
 "expires_at": "2014-05-08T17:01:06.000Z"
 }
}

POST https://api.gocardless.com/mandate_pdfs HTTP/1.1
Content-Type: application/json
Accept-Language: fr
{
 "mandate_pdfs": {
 "iban": "FR14BARC20000055779911"
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "mandate_pdfs": {
 "url": "https://mandate-previews.gocardless.com/?token=vlaPBHzSvm1OPwDNatZYWJCM7XZcCUuLPn7m5XV5",
 "expires_at": "2014-05-08T17:01:06.000Z"
 }
}

POST https://api.gocardless.com/mandate_pdfs HTTP/1.1
Content-Type: application/json
{
 "mandate_pdfs": {
 "account_number": "44779911",
 "branch_code": "200000",
 "country_code": "GB",
 "links": {
 "mandate": "MD123"
 }
 }
}

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/json
{
 "error": {
 "message": "Cannot provide both a mandate and other details",
 "documentation_url": "https://developer.gocardless.com/api-reference#validation_failed",
 "type": "validation_failed",
 "request_id": "bd271b37-a2f5-47c8-b461-040dfe0e9cb1",
 "code": 422,
 "errors": [
 {
 "reason": "validation_failed",
 "message": "Cannot provide both a mandate and other details"
 }
]
 }
}

 PHP
 $client = new \GoCardlessPro\Client([
 'access_token' => 'your_access_token_here',
 'environment' => \GoCardlessPro\Environment::SANDBOX
]);

$client->mandatePdfs()->create([
 "params" => ["links" => ["mandate" => "MD123"]]
]);

$client->mandate_pdfs()->create([
 "params" => ["account_number" => "44779911",
 "branch_code" => "200000",
 "country_code" => "GB"]
]);

$client->mandatePdfs()->create([
 "params" => ["iban" => "FR14BARC20000055779911"],
 "headers" => ['accept-language' => 'fr']
]);

 Python
 import gocardless_pro
client = gocardless_pro.Client(access_token="your_access_token_here", environment='sandbox')

client.mandate_pdfs.create(params={
 "links": {"mandate": "MD123"}
})

client.mandate_pdfs.create(params={
 "account_number": "44779911",
 "branch_code": "200000",
 "country_code": "GB"
})

client.mandate_pdfs.create(params={
 "iban": "FR14BARC20000055779911"
}, headers={
 "Accept-Language": "fr"
})

 Ruby
 @client = GoCardlessPro::Client.new(
 access_token: "your_access_token",
 environment: :sandbox
)

@client.mandate_pdfs.create(
 params: {
 links: { mandate: "MD123" }
 }
)

@client.mandate_pdfs.create(
 params: {
 account_number: "55779911",
 branch_code: "200000",
 country_code: "GB"
 }
)

@client.mandate_pdfs.create(
 params: {
 iban: "FR14BARC20000055779911",
 },
 headers: {
 "Accept-Language" => "fr"
 }
)

 Java
 import static com.gocardless.GoCardlessClient.Environment.SANDBOX;
String accessToken = "your_access_token_here";
GoCardlessClient client = GoCardlessClient
 .newBuilder(accessToken)
 .withEnvironment(SANDBOX)
 .build();

MandatePdf mandatePdfForMandate = client.mandatePdfs().create()
 .withLinksMandate("MD123")
 .execute();

MandatePdf mandatePdfForBankDetails = client.mandatePdfs.create()
 .withAccountNumber("44779911")
 .withBranchCode("200000")
 .withCountryCode("GB")
 .execute();

MandatePdf mandatePdfInFrench = client.mandatePdfs.create()
 .withIban("FR14BARC20000055779911")
 .withHeader("Accept-Language", "fr")
 .execute();

 JavaScript
 const constants = require('gocardless-nodejs/constants');
const gocardless = require('gocardless-nodejs');
const client = gocardless('your_access_token_here', constants.Environments.Sandbox);

await client.mandatePdfs.create({
 links: {
 mandate: "MD123"
 }
});

await client.mandatePdfs.create(
 {
 links: {
 mandate: "MD123"
 }
 },
 "mandate_pdfs_idempotency_key"
);

await client.mandatePdfs.create(
 {
 account_number: "44779911",
 branch_code: "200000",
 country_code: "GB"
 },
 "",
 { "Accept-Language": "fr" }
);

 .NET
 String accessToken = "your_access_token";
GoCardlessClient gocardless = GoCardlessClient.Create(accessToken, Environment.SANDBOX);

var mandatePdfRequest = new GoCardless.Services.MandatePdfsCreateRequest()
{
 AccountNumber = "55779911",
 BranchCode = "200000",
 CountryCode = "GB"
};

var mandatePdfResponse = await Gocardless.MandatePdfs.CreateAsync(mandatePdfRequest);
GoCardless.Resources.MandatePdf mandatePdf = mandatePdfResponse.MandatePdf;

var mandatePdfRequest = new GoCardless.Services.MandatePdfsCreateRequest()
{
 Iban = "FR14BARC20000055779911"
};

var requestSettings = new GoCardless.Internals.RequestSettings
{
 CustomiseRequestMessage = msg => msg.Headers.Add("Accept-Language", "fr")
};

var mandatePdfResponse = await GoCardless.MandatePdfs.CreateAsync(mandatePdfRequest, requestSettings);
GoCardless.Resources.MandatePdf mandatePdf = mandatePdfResponse.MandatePdf;

 Go
 package main

import (
 gocardless "github.com/gocardless/gocardless-pro-go/v2"
)

func main() {
 accessToken := "your_access_token_here"
 config, err := gocardless.NewConfig(accessToken, gocardless.WithEndpoint(gocardless.SandboxEndpoint))
 if err != nil {
 fmt.Printf("got err in initialising config: %s", err.Error())
 return
 }
 client, err := gocardless.New(config)
 if err != nil {
 fmt.Println("error in initialisating client: %s", err.Error())
 return
 }

 mandatePdfCreateParams := gocardless.MandatePdfCreateParams{
 Links: &gocardless.MandatePdfCreateParamsLinks{
 Mandate: "MD123",
 },
 }

 mandatePdf, err := client.MandatePdfs.Create(context, mandatePdfCreateParams)

 requestOption := gocardless.WithIdempotencyKey("mandate_pdfs_idempotency_key")
 mandatePdf, err = client.MandatePdfs.Create(context, mandatePdfCreateParams, requestOption)

 headers := map[string]string{"Accept-Language": "fr"}
 requestOption = gocardless.WithHeaders(headers)
 mandatePdf, err = client.MandatePdfs.Create(context, mandatePdfCreateParams, requestOption)

}

 Appendix

Webhooks

 Check out our getting started guide for a step-by-step introduction to handling webhooks, with PHP, Ruby, Python and Java code samples

Overview

A webhook is a HTTP request containing a list of GoCardless events. Webhooks notify you of
new events, e.g. when the bank informs us that one of your
payments has failed.

You can enable webhooks by creating a Webhook Endpoint in your GoCardless dashboard.

When an event occurs in your GoCardless account, we’ll batch that (and any
other undelivered events) up into a single webhook and send it to every enabled webhook
endpoint as a POST request.

There are a few things to note when using webhooks:

	
 Webhooks may arrive out of order, or the same one may be delivered multiple times. Each
event may be included in one or more webhooks. We can only guarantee that we’ll try to
deliver each event at least once.

	
 When deciding what actions to take in response to Webhook events, we recommend you
switch on the details[cause] field. Other fields, such as details[reason_code], are
payment scheme-specific and can be inconsistent between banks, whereas the
details[cause] field is our simplified and predictable key indicating what triggered
the event.

	
 Webhooks with an invalid signature must return a 498 Token Invalid error.

	
 Webhooks about unknown events should be ignored, and return 204 No Content.
GoCardless may add new events to the API without considering this a backwards
incompatible change.

	
 You must use SSL/TLS for webhook URLs. Unsecured webhook URLs are only
allowed in the sandbox environment. Your server must respond with the full
certificate chain including intermediate certificates. You can test this
with a tool like Qualys SSL labs

	
 Webhooks include an Origin header indicating what GoCardless environment they were
sent from. This will be https://api.gocardless.com for live, and
https://api-sandbox.gocardless.com for sandbox.

	
 All the webhooks you’ve ever been sent are viewable in your GoCardless dashboard in the
“Developers” area.

	
 The webhook ID included under the meta key should not be used for deduplication: it is only
included to help with debugging. Searching for this ID in the GoCardless dashboard will show
you the information on the most recent delivery attempt for this webhook.

Our webhooks platform will only wait 10 seconds for a response from your server, before
terminating the request - we suggest you store the webhook body and execute
any work that needs doing asynchronously to avoid issues.
The Webhook’s response_code will be null when this happens.

Status codes

Your webhook handler should return a response with a 2xx status code,
e.g. 200 OK, or 204 No Content. If the webhook signature is invalid, you should return
a 498 Invalid Token

Errors & Retries

In the event we fail to deliver the webhook, or you respond with a non 2xx status code,
we will attempt to resend the webhook up to 8 times at increasing time intervals,
including the initial attempt this will be a total of 9 attempts.

You can view webhooks we’ve sent you in your GoCardless dashboard, and can retry them if required.

Approved IP addresses

We send webhooks from the following IP addresses which you may wish to add to your firewalls approved list:

	35.204.73.47
	35.204.191.250
	35.204.214.181

We will provide advance notification by email at least two weeks before we make any changes to these addresses.

You can set the email we will contact you at from your Dashboard - simply click “Settings” in the top-right hand corner, then “Contact preferences”, and then edit your developer contact.

 Signing Webhooks

We sign the body of the POST request with an HMAC SHA256 hex digest, using the secret of
the webhook endpoint for which this webhook is being sent. This is done using an
additional header:

	Webhook-Signature
	The HMAC SHA256 hex digest of the request body.

You must check that the webhook has a valid signature before processing it.
Here’s how you could do that in Ruby:

request_signature - the signature sent in Webhook-Signature
request_body - the JSON body of the webhook request
secret - the secret for the webhook endpoint

require "openssl"

digest = OpenSSL::Digest.new("sha256")
calculated_signature = OpenSSL::HMAC.hexdigest(digest, secret, request_body)

if calculated_signature == request_signature
 # Signature ok!
else
 # Invalid signature. Ignore the webhook and return 498 Token Invalid
end

 Examples

Payments

In this example, you have set up two customers, and each has a mandate. You
created a payment for each customer, called “Test Payment” and “Test Payment 2”
respectively. A few days later, these have been collected, and this has generated
a payment update event for those payments. You have created a webhook endpoint, with id
WE123, secret 123ABC456DEF, and url https://example.com/webhooks.

We will send a POST request, like the one on the right, to
https://example.com/webhooks. To process it, you should:

	Store the contents of the webhook in durable storage e.g a database or queue.
	Check the signature
	Return 204 No Content
	Process the content of the webhook asynchronously by
 	Checking that you have not already processed the events contained in the webhook.
	Fetching the updated resources, using the ID’s supplied, and check that they have not
changed further since the webhook was sent (since webhooks may arrive out of order)
	Acting on the events, e.g. shipping goods, extending subscription

 HTTP

 HTTP
 POST https://example.com/webhooks HTTP/1.1
User-Agent: gocardless-webhook-service/1.1
Origin: https://api-sandbox.gocardless.com
Content-Type: application/json
Webhook-Signature: 8d625e2359a8a2f9161e0ec9a534a9f75c47aa7b305b18685929ad58f08d2efc
{
 "events": [
 {
 "id": "EV123",
 "created_at": "2014-08-03T12:00:00.000Z",
 "action": "confirmed",
 "resource_type": "payments",
 "links": {
 "payment": "PM123"
 },
 "details": {
 "origin": "gocardless",
 "cause": "payment_confirmed",
 "description": "Payment was confirmed as collected"
 }
 },
 {
 "id": "EV456",
 "created_at": "2014-08-03T12:00:00.000Z",
 "action": "failed",
 "resource_type": "payments",
 "links": {
 "payment": "PM456"
 },
 "details": {
 "origin": "bank",
 "cause": "mandate_cancelled",
 "description": "Customer cancelled the mandate at their bank branch.",
 "scheme": "bacs",
 "reason_code": "ARUDD-1"
 }
 }
],
 "meta": { "webhook_id": "WB123" }
}

 Mandates

In this example a customer has two mandates, and has just closed their bank
account. Both mandates were cancelled by their bank, and this is being passed on
through GoCardless via a webhook, using the same webhook endpoint as in the previous
example. Once again, you should:

	Store the contents of the webhook in durable storage e.g a database or queue.
	Check the signature
	Return 204 No Content
	Process the content of the webhook asynchronously by
 	Checking that you have not already processed the events contained in the webhook.
	Fetching the updated resources, using the ID’s supplied, and check that they have not
changed further since the webhook was sent (since webhooks may arrive out of order)
	Acting on the events, e.g. shipping goods, extending subscription

 HTTP

 HTTP
 POST https://example.com/webhooks HTTP/1.1
User-Agent: gocardless-webhook-service/1.1
Origin: https://api-sandbox.gocardless.com
Content-Type: application/json
Webhook-Signature: c1ec421b5f7a1f06172ee1c50d013fe9a91f0db899718f88f9d4a32a4e2180e5
{
 "events": [
 {
 "id": "EV123",
 "created_at": "2014-08-04T12:00:00.000Z",
 "action": "cancelled",
 "resource_type": "mandates",
 "links": {
 "mandate": "MD123"
 },
 "details": {
 "origin": "bank",
 "cause": "bank_account_disabled",
 "description": "Your customer closed their bank account.",
 "scheme": "bacs",
 "reason_code": "ADDACS-B"
 }
 },
 {
 "id": "EV456",
 "created_at": "2014-08-04T12:00:00.000Z",
 "action": "expired",
 "resource_type": "mandates",
 "links": {
 "mandate": "MD456"
 },
 "details": {
 "origin": "gocardless",
 "cause": "mandate_expired",
 "description": "The mandate expired due to inactivity."
 }
 }
],
 "meta": { "webhook_id": "WB123" }
}

 Payouts

In this example, your payments have been collected by GoCardless, and are now
ready to be paid out into the associated
creditor bank account. This payout has
just been generated, which triggers a webhook using the same webhook endpoint as in the
previous examples. Once again you should:

	Store the contents of the webhook in durable storage e.g a database or queue.
	Check the signature
	Return 204 No Content
	Process the content of the webhook asynchronously by
 	Checking that you have not already processed the events contained in the webhook.
	Fetching the updated resources, using the ID’s supplied, and check that they have not
changed further since the webhook was sent (since webhooks may arrive out of order)
	Acting on the events, e.g. shipping goods, extending subscription

 HTTP

 HTTP
 POST https://example.com/webhooks HTTP/1.1
User-Agent: gocardless-webhook-service/1.1
Origin: https://api-sandbox.gocardless.com
Content-Type: application/json
Webhook-Signature: 42aa2860ecb559d16f9ecbe7e590ffeee2a992a03008be1deca22d97865693a7
{
 "events": [
 {
 "id": "EV123",
 "created_at": "2014-08-04T12:00:00.000Z",
 "action": "paid",
 "resource_type": "payouts",
 "links": {
 "payout": "PO123"
 }
 }
],
 "meta": { "webhook_id": "WB123" }
}

 Subscriptions

In this example a subscription has just raised a payment, which triggers a
webhook using the same webhook endpoint as in the previous examples. Once again you
should:

	Store the contents of the webhook in durable storage e.g a database or queue.
	Check the signature
	Return 204 No Content
	Process the content of the webhook asynchronously by
 	Checking that you have not already processed the events contained in the webhook.
	Fetching the updated resources, using the ID’s supplied, and check that they have not
changed further since the webhook was sent (since webhooks may arrive out of order)
	Acting on the events, e.g. shipping goods, extending subscription

 HTTP

 HTTP
 POST https://example.com/webhooks HTTP/1.1
User-Agent: gocardless-webhook-service/1.1
Origin: https://api-sandbox.gocardless.com
Content-Type: application/json
Webhook-Signature: da7db0aa5e63b77b3890e7ca85c129a8b317f7605f7d6e43466751a70ff4afe7
{
 "events": [
 {
 "id": "EV123",
 "created_at": "2014-08-04T12:00:00.000Z",
 "action": "payment_created",
 "resource_type": "subscriptions",
 "links": {
 "subscription": "SB123",
 "payment": "PM123"
 }
 }
],
 "meta": { "webhook_id": "WB123" }
}

 JavaScript Flow

You can use our JavaScript flow to create custom
payment pages. Our JavaScript library will send sensitive bank details to our servers
directly and return a token that can be used to create a customer bank account.

The API allows you to create and show your customer bank account tokens.

Restricted: the JavaScript Flow is restricted
to GoCardless Pro & Enterprise accounts with approved payment pages.
To instead use the GoCardless hosted payment pages, see the
redirect flows endpoint.

Customer Bank Account Tokens

Customer bank account tokens can only be used once. Attempting to create a second customer bank account from the same customer bank account token will result in a customer_bank_account_token_used error.

Properties

	id
	Unique identifier, beginning with “AT”.
	created_at
	Fixed timestamp of when the customer bank account token was originally created.
	links[customer_bank_account]
	ID of customer bank account that was created from this token.
Note: this property will only be present if this token has been used to create a customer bank account.

 Create a customer bank account token

Creates a new customer bank account token object.

Relative endpoint: POST /customer_bank_account_tokens

 Note: The customer bank account token API is currently in beta and will change.

 We may not honour the usual backwards compatibility practice, however we will do our best to inform you of upcoming changes.

GoCardless performs modulus checks on all bank details. For testing purposes, check the
test bank details section for a list
of scheme specific set of bank details you can use.

The overall flow is:

	
 You render a payment form with a publishable access token
embedded on the page.

	
 Your customer supplies their bank account details and
submits the form. The form submission needs to be intercepted
in JavaScript and submitted using our JavaScript library;
on success you should inject the created token into the form
and complete the submission to your server.

	
 You create a customer bank account
passing in the token in place of bank account details.

Intercepting form submission with the JavaScript library

Parameters

Bank account details may either be supplied using the IBAN (international bank account
number), or local details. For more information on
the different fields required in each country, please see the
local bank details section.

	publishable_access_token
	
required can only be sent as a top level parameter. This token will be sent through
in the Authorization header when the request is made.
	account_number
	Bank account number.
	bank_code
	Bank identifying code.
	branch_code
	Branch identifying code.
	iban
	Valid international bank account number.
	account_type
	Bank account type. Only required for USD denominated bank accounts - see local details for more information.
	country_code
	
ISO 3166-1 alpha-2 code. Defaults to the country code of the iban if supplied, otherwise is required.
	currency
	
ISO 4217 currency code, defaults to national currency of country_code.
	account_holder_name
	
required Name of the account holder, as it appears with the bank. This may not be more than 18 characters.

<!DOCTYPE html>
<html>
 <body>
 <script src="https://pay-sandbox.gocardless.com/js/beta"></script>
 <!-- For the live environment, use https://pay.gocardless.com/js/beta -->
 <form id="form"
 action="/complete"
 method="post"
 onsubmit="onSubmit(event)">
 <input name="publishable_access_token" id="publishable_access_token" type="hidden"
 value="JF00001078YEW7VHAH0RA4Z73J7PYBYN">
 <input name="given_name" id="given_name" type="text">
 <input name="family_name" id="family_name" type="text">
 <input name="address_line1" id="address_line1" type="text">
 <input name="city" id="city" type="text">
 <input name="region" id="region" type="text">
 <input name="postal_code" id="postal_code" type="text">
 <input name="country_code" id="country_code" type="text">
 <input id="account_number" type="text">
 <input id="account_type" type="text">
 <input id="bank_code" type="text">
 <input id="branch_code" type="text">
 <input id="iban" type="text">
 <input id="account_holder_name" type="text">
 <input id="bank_accounts_country_code" type="text">
 <input type="submit" value="Continue">
 <h1 id="error"></h1>
 </form>

 <script>
 function onSubmit(event) {
 var form = event.target;
 var publishableAccessToken = document.getElementById('publishable_access_token').value;

 GoCardless.customerBankAccountTokens.create({
 publishable_access_token: publishableAccessToken,
 customer_bank_account_tokens: {
 account_number: document.getElementById('account_number').value,
 bank_code: document.getElementById('bank_code').value,
 branch_code: document.getElementById('branch_code').value,
 iban: document.getElementById('iban').value,
 account_holder_name: document.getElementById('account_holder_name').value,
 country_code: document.getElementById('bank_accounts_country_code').value
 }
 }, function(response) {
 if (response.error) {
 document.getElementById('error')
 .textContent = 'Error: ' + response.error.message;
 } else {
 var input = document.createElement('input');
 input.type = 'hidden';
 input.value = response.customer_bank_account_tokens.id;
 input.name = 'customer_bank_account_token';
 form.appendChild(input);

 form.submit();
 }
 });

 // Prevent form submission
 event.preventDefault();
 }
 </script>
 </body>
</html>

Creating a customer bank account after the form
is submitted.

require "gocardless_pro"
require "sinatra"

post "/complete" do

 client = GoCardlessPro::Client.new(access_token: "access_token")
 # You can also pass in environment as :sandbox to make requests to the sandbox environment rather than production

 customer_params = {
 email: params[:email],
 given_name: params[:given_name],
 family_name: params[:family_name],
 address_line1: params[:address_line1],
 city: params[:city],
 postal_code: params[:postal_code],
 country_code: params[:country_code],
 }

 customer = client.customers.create(params: customer_params)

 customer_bank_account_params = {
 links: {
 customer: customer.id,
 customer_bank_account_token: params[:customer_bank_account_token]
 }
 }

 customer_bank_account = client.customer_bank_accounts.create(
 params: customer_bank_account_params
)

 new_mandate = client.mandates.create(params: {
 links: {
 customer_bank_account: customer_bank_account.id
 }
 })

 puts new_mandate.inspect

 "Thanks!"
end

 Get a single customer bank account token

Retrieves the details of an existing customer bank account token.

Relative endpoint: GET /customer_bank_account_tokens/AT123

 HTTP

 HTTP
 GET https://api.gocardless.com/customer_bank_account_tokens/AT123 HTTP/1.1

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "customer_bank_account_tokens": {
 "id": "AT123",
 "created_at": "2014-05-08T17:01:06.000Z",
 "links": {
 "customer_bank_account": "BA123"
 }
 }
}

 OAuth

 Check out our getting started guide for a step-by-step introduction to building an OAuth integration, with PHP, Ruby, Python and Java code samples

OAuth allows you to work with other users’ GoCardless accounts. Once a user approves you, you can use the GoCardless API on their behalf and receive their webhooks.

The GoCardless OAuth API conforms to the OAuth spec, and can be used with OAuth client libraries available in most languages.

The base URLs for the GoCardless OAuth API are:

	
https://connect.gocardless.com for live
	
https://connect-sandbox.gocardless.com for sandbox

 The OAuth flow

The flow to link a GoCardless account to your app is as follows:

	The user clicks a link on your site to the GoCardless OAuth flow. The link includes details of your app as well as a scope which defines the level of access you want the user to authorise.
	On the GoCardless OAuth page, the user logs in to their GoCardless account, or creates a new one, and agrees to connect their account to your app.

	The user, having agreed that they’d like to connect to your app, is redirected back to your site with a code.
	Your site exchanges the code for a permanent access_token which can be stored and used to make requests to the API on the user’s behalf.
	You can then make API requests using the user’s access token and receive webhooks relating to their account.

You can try the process for yourself by connecting your sandbox account to our example app. The source code, written in Ruby, is available here - it provides a good introduction to creating your own OAuth app.

 Creating an OAuth app

To get started, you’ll need a GoCardless account. If you haven’t already, you
can sign up here to get one.
Once you’re logged into your account, you can create apps from the
developer section of your dashboard

When you do this, you’ll be issued a client_id and client_secret, each 64
characters long, which you’ll use to identify your integration when requesting
access to other users’ GoCardless accounts.

 Building an authorisation link

An authorisation link takes your user to the GoCardless OAuth flow, where they may agree to connect their GoCardless account to your app. It includes details of your app and the level of access requested.

To construct an authorisation link, take the relevant OAuth base URL plus the relative endpoint /oauth/authorize with the following querystring parameters. You should redirect your user to this link using a GET request.

Parameters

	response_type
	
required The kind of OAuth request you’re making - only code is supported.
	client_id
	
required The client_id of your app.
	scope
	
required The level of access you want to your users’ GoCardless accounts - this may either be read_write or read_only.
	redirect_uri
	
required The URL to send your users to once they’ve agreed to connect their account to GoCardless (as well if they deny authorisation or something goes wrong, in which case we’ll pass you details of the error). This must exactly match one of the redirect_uris stored on your app.
	state
	An optional string of your choice. Any value you pass in here will be included as a querystring parameter when we redirect back to your redirect URL. Please note that this value can be tampered with by your user, and so shouldn’t be trusted implicitly. We recommend using this parameter for a CSRF token.
	prefill[email]
	Your user’s email address. We will pre-fill this on the login or signup forms to make it quicker and easier for them to complete the flow.
	prefill[given_name]
	Your user’s given (first) name. We will pre-fill this on the signup form.
	prefill[family_name]
	Your user’s family (last) name. We will pre-fill this on the signup form.
	prefill[organisation_name]
	The name of the user’s organisation (e.g. Acme Widget plc, 2nd Upminster Scout Group or Tim Rogers). We will pre-fill this on the signup form.
	prefill[country_code]
	The country code of the users’ organisation in ISO 3166-1 alpha-2 code format. We will pre-fill this on the signup form.
	language
	The language that the login/signup form should be in, in ISO 639-1 format. If the language specified is supported, we will use it. Otherwise, we will fall back to the most appropriate available language for the user, based on factors like their browser settings and location.
	initial_view
	An optional parameter, set to either signup or login to specify which view we should show when your user enters the OAuth flow. By default, they will see the login view if you’re requesting read_only access and the signup view if requesting read_write.

 HTTP

 HTTP
 GET https://connect.gocardless.com/oauth/authorize HTTP/1.1
 response_type=code&
 client_id=sx6WHUAVMUrinkJNJn8DotVFm&
 scope=read_write&
 redirect_uri=http%3A%2F%2Flocalhost%2Fcallback&
 state=q8wEr9yMohTP&
 prefill[email]=tim%40gocardless.com,
 prefill[given_name]=Tim,
 prefill[family_name]=Rogers,
 prefill[organisation_name]=Tim%27s%20Fishing%20Store
 prefill[country_code]=GB

 Handling the redirect back to you

Once the user has connected their GoCardless account to your app, they’ll be redirected to your redirect_uri.

In the querystring, you will be passed a code, which you must exchange for a long-lived access token within 5 minutes. If you provided a state in the original redirect to GoCardless, this will be passed back to you.

Errors

If the user denies your request to connect, or some other kind of error occurs (for example you specify an invalid scope or response_type is missing), the user will be redirected back to you with an error and error_description, per the OAuth spec.

error will be set to one of the following, and there will be a human-readable error_description which you may wish to store to refer to in case of errors:

	invalid_request
	You failed to provide either a scope or a response_type.
	invalid_scope
	You provided a scope other than read_only or read_write.
	unsupported_response_type
	You provided a response_type other than code.
	access_denied
	The user chose not to connect their account to your app.

 HTTP

 HTTP
 GET https://localhost/callback HTTP/1.1
 code=6NJiqXzT7HcgEGsAZXUmaBfB&
 state=q8wEr9yMohTP

GET https://localhost/callback HTTP/1.1
 error=access_denied&
 error_description=The%20user%20cancelled%20the%20authorisation%20process.

 Exchanging an authorisation code for an access token

Exchanges the authorisation code passed to you in the redirect for an access token which
you may store and use to make future requests on the user’s behalf. Note that if the
user has previously authorised with you, we will still generate a new access token and
will disable any existing tokens for that user.

Relative endpoint: POST /oauth/access_token

Parameters

	grant_type
	
required The kind of OAuth grant you’ve received - this will be authorization_code.
	code
	
required The authorisation code that resulted from the user agreeing to connect their account to your app, passed to you in the querystring as code. This will expire after 5 minutes, so you should exchange it for an access token immediately.
	redirect_uri
	
required One of the redirect_uris set on your app, and which you provided when sending your user to the OAuth flow.
	client_id
	
required The client_id for your registered app.
	client_secret
	
required The client_secret for your registered app.

Response

Following the OAuth spec, this endpoint responds with JSON including an access_token if successful.

	access_token
	Your permanent access token for authenticating on behalf of the user. You should store this for future use.
	scope
	The scope of the access token, as originally requested (either read_write or read_only).
	token_type
	The type of token you’ve been issued - this will be bearer.
	organisation_id
	The ID of the GoCardless account to which you have been connected. You should store this for future use, as you will need it to identify to which of your users a webhook relates.
	email
	A contact email for the GoCardless account to which you have been connected.

Errors

In case of an error, the endpoint responds with JSON including an error and human-readable error_description. error may contain one of the following:

	invalid_request
	You have not provided at least one of the required parameters (grant_type, code, redirect_uri, client_id and client_secret), or one of your parameters is of the wrong type.
	unsupported_grant_type
	You provided a grant_type other than authorization_code.
	invalid_client
	The client_id and client_secret you provided to authenticate as your app were invalid or refer to a disabled app.
	invalid_grant
	The code you provided has already been used, has expired, or the redirect_uri you provided does not match the one originally provided when passing the user to GoCardless.

 HTTP

 HTTP
 POST https://connect.gocardless.com/oauth/access_token HTTP/1.1
 grant_type=authorization_code&
 code=6NJiqXzT7HcgEGsAZXUmaBfB&
 redirect_uri=http%3A%2F%2Flocalhost%2Fcallback&
 client_id=sx6WHUAVMUrinkJNJn8DotVFm&
 client_secret=exaxerfrWrPdxADDUBWVqGbPbF

HTTP/1.1 200 (OK)
Content-Type: application/json
{
 "access_token": "e72e16c7e42f292c6912e7710c123347ae178b4a",
 "scope": "read_write",
 "token_type": "bearer",
 "email": "accounts@acme.com",
 "organisation_id": "OR123"
}

POST https://connect.gocardless.com/oauth/access_token HTTP/1.1
 grant_type=authorization_code&
 code=goQcmyY8MebbAuKy8L&
 redirect_uri=http%3A%2F%2Flocalhost%2Fcallback&
 client_id=sx6WHUAVMUrinkJNJn8DotVFm&
 client_secret=exaxerfrWrPdxADDUBWVqGbPbF

HTTP/1.1 400 (Bad Request)
Content-Type: application/json
{
 "error": "invalid_grant",
 "error_description": "code has already been used"
}

 Making requests

You can now make standard API requests using the access token you received in exchange for the authorisation code. This will allow you to view and manipulate (depending on the scope you requested) the user’s data.

As with elsewhere in the API, the access token must be provided in an Authorization request header, using the bearer authentication scheme.

Authorization: Bearer e72e16c7e42f292c6912e7710c123347ae178b4a

Any errors generated by requests using your users’ access tokens will follow the usual structure of errors in the GoCardless API, as opposed to the OAuth-specific errors above.

If the access token provided is invalid, you will receive a 401 Unauthorized response. The response body will include a reason, which will be either:

	
access_token_not_found (the access token was not recognised); or
	
access_token_revoked (the user has revoked your access to their account); or
	
access_token_not_active (the access token is inactive for another reason)

Users will need to go through the authorisation flow again in order for you to obtain a new access token.

If you receive an unexpected 403 Forbidden response for an endpoint your app is authorised to access (see below), this may indicate that your user’s account is under review. The user will have been informed by GoCardless that they need to provide additional information to re-enable their account.

 Restricted: You will not be able to access the following
 API endpoints on behalf of organisations connected to your app:

 	Creditor (create and update)
	Creditor Bank Account (all endpoints)

 Unless your app’s payment pages that have been approved as
 scheme rules compliant by our sponsor bank
 you must use GoCardless’ hosted payment pages (via the Redirect Flow API).
 As such, the following endpoints will also be restricted by default:

 	Mandate (create and reinstate)
	Customer (create)
	Customer bank account (create)

 HTTP

 HTTP
 POST https://api.gocardless.com/customers/ HTTP/1.1
Authorization: Bearer e72e16c7e42f292c6912e7710c123347ae178b4a

HTTP/1.1 200 (OK)

GET https://api.gocardless.com/payments/ HTTP/1.1
Authorization: Bearer access_token_which_has_been_revoked

HTTP/1.1 401 (Unauthorized)
Content-Type: application/json
{
 "error": {
 "code": 401,
 "type": "invalid_api_usage",
 "errors": [
 {
 "message": "The access token you provided has been revoked",
 "reason": "access_token_revoked"
 }
],
 "documentation_url": "https://developer.gocardless.com/api-reference/#access_token_revoked",
 "message": "The access token you provided has been revoked",
 "request_id": "dd50eaaf-8213-48fe-90d6-5466872efbc4"
 }
}

 Receiving webhooks

If you’ve provided a webhook URL for your app, we’ll notify you of new events relating to the GoCardless accounts of your users. For details on how webhooks work and how to process them, see the guide.

The events we send you will be identical to those described, but with an additional links[organisation] attribute allowing you to identify which of your users a webhook relates to.

The organisation ID is provided when
exchanging an authorisation code for an access token
and when looking up an access token. If you expect to
handle webhooks, you should store it for future reference.

 HTTP

 HTTP
 POST https://example.com/webhooks HTTP/1.1
User-Agent: gocardless-webhook-service/1.1
Content-Type: application/json
Webhook-Signature: 86f8bb84a4de63cff4af48f22b64b20970b415b066e3d21459ea515052860514
{
 "events": [
 {
 "id": "EV123",
 "created_at": "2014-08-03T12:00:00.000Z",
 "action": "confirmed",
 "resource_type": "payments",
 "links": {
 "payment": "PM123",
 "organisation": "OR123"
 },
 "details": {
 "origin": "gocardless",
 "cause": "payment_confirmed",
 "description": "Payment was confirmed as collected"
 }
 },
 {
 "id": "EV456",
 "created_at": "2014-08-03T12:00:00.000Z",
 "action": "failed",
 "resource_type": "payments",
 "links": {
 "payment": "PM456",
 "organisation": "OR456"
 },
 "details": {
 "origin": "bank",
 "cause": "mandate_cancelled",
 "description": "Customer cancelled the mandate at their bank branch.",
 "scheme": "bacs",
 "reason_code": "ARUDD-1"
 }
 }
]
}

 App Fees

If your OAuth app is creating payments on behalf of your users you may wish to add on a fee in addition to the fee that GoCardless charges.

When an OAuth app creates a payment or a subscription, it can specify an app_fee. This is an amount in pence or cents that will be deducted from the amount that the user receives. A fee charged by an app must be no more than 50% of the total payment amount.

App fees will be collated in a payout and paid out. App fee payouts are created and paid out daily, as with other payouts.

 HTTP

 HTTP
 POST https://api.gocardless.com/payments HTTP/1.1
Content-Type: application/json
{
 "payments": {
 "app_fee": 10,
 "amount": 100,
 "currency": "GBP",
 "links": {
 "mandate": "MD123"
 }
 }
}

POST https://api.gocardless.com/subscriptions HTTP/1.1
Content-Type: application/json
{
 "subscriptions": {
 "app_fee": 10,
 "amount": 2500,
 "currency": "GBP",
 "name": "Monthly Magazine",
 "interval_unit": "monthly",
 "day_of_month": "1",
 "links": {
 "mandate": "MA123"
 }
 }
}

 Looking up an access token

Using the API you can query an access token to check if it is valid, and if so, to find
out more about it (for example if you’re not sure what scope the token has, or what
organisation ID it relates to).

Relative endpoint: POST /oauth/introspect

Parameters

	token
	
required The access token you want to look up.
	client_id
	
required The client_id for your registered app.
	client_secret
	
required The client_secret for your registered app.

Response

Following the OAuth token introspection spec, this
endpoint responds with JSON as follows:

	active
	A boolean representing whether the provided access token is a valid, active access
token attached to your app
	scope
	The scope of the access token, as originally requested (either read_write or
read_only). Only returned if the token is active.
	token_type
	The type of token you’ve been issued - this will be bearer. Only returned if the
token is active.
	organisation_id
	The ID of the GoCardless account which this token gives you access to. You should
store this for future use, as you will need it to identify to which of your users a
webhook relates. Only returned if the token is active.
	email
	A contact email for the GoCardless account which this token gives you access to.
Only returned if the token is active.

Errors

In case of an error, the endpoint responds with JSON including an error and
human-readable error_description. error may contain one of the following:

	invalid_request
	You have not provided at least one of the required parameters (client_id,
client_secret and token), or one of your parameters is of the wrong type.
	invalid_client
	The client_id and client_secret you provided to authenticate as your app were
invalid or refer to a disabled app.

 HTTP

 HTTP
 POST https://connect.gocardless.com/oauth/introspect HTTP/1.1
Content-Type: application/x-www-form-urlencoded

client_id=jBo8XCUJLN01Mzya9vYS-7X5D&client_secret=hzBBiZTWnx8glPLwvJoVIJa1&token=live_y7VPTOdgFZtFaAS9V8HT3

HTTP/1.1 200 OK
Content-Type: application/json
{
 "active": true,
 "scope": "read_write",
 "token_type": "bearer",
 "email": "accounts@acme.com",
 "organisation_id": "OR123"
}

POST https://connect.gocardless.com/oauth/introspect HTTP/1.1
Content-Type: application/x-www-form-urlencoded

client_id=jBo8XCUJLN01Mzya9vYS-7X5D&client_secret=hzBBiZTWnx8glPLwvJoVIJa1&token=non_existent_or_inactive_token

HTTP/1.1 200 OK
Content-Type: application/json
{
 "active": false
}

 Disconnecting a user from your app

If a user no longer wishes to use your app, they can revoke your access from their
GoCardless Dashboard, or you can revoke (i.e. invalidate) their access token yourself
using the API.

Relative endpoint: POST /oauth/revoke

Parameters

	token
	
required The access token you want to revoke.
	client_id
	
required The client_id for your registered app.
	client_secret
	
required The client_secret for your registered app.

Response

Following the OAuth token revocation spec,
providing you successfully authenticate using your client_id and client_secret, this
API will always respond with a 200 OK and no body, whether a token was successfully
revoked or not.

Errors

In case of an error, the endpoint responds with JSON including an error and
human-readable error_description. error may contain one of the following:

	invalid_request
	You have not provided at least one of the required parameters (client_id,
client_secret and token), or one of your parameters is of the wrong type.
	invalid_client
	The client_id and client_secret you provided to authenticate as your app were
invalid or refer to a disabled app.

 HTTP

 HTTP
 POST https://connect.gocardless.com/oauth/revoke HTTP/1.1
Content-Type: application/x-www-form-urlencoded

client_id=jBo8XCUJLN01Mzya9vYS-7X5D&client_secret=hzBBiZTWnx8glPLwvJoVIJa1&token=live_y7VPTOdgFZtFaAS9V8HT3

HTTP/1.1 200 OK
Content-Length: 0

 Compliance Requirements

When building a Direct Debit integration your payment pages and notifications
need to comply with scheme-level rules. To help you design compliant pages
quickly we have a series of guides:

Payment pages:

	ACH requirements (standard)
	ACH requirements (advanced)
	Autogiro requirements
	Bacs requirements
	BECS requirements
	BECS NZ requirements
	PAD requirements
	SEPA requirements

Customer notifications:

	ACH requirements
	Autogiro requirements
	Bacs requirements
	BECS requirements
	BECS NZ requirements
	PAD requirements
	SEPA requirements

Before your account can be set to “live” our sponsor bank will need to sign off
your compliance in the above areas.

 Alternatively, you may wish to use the Redirect Flow API,
 which enables you to use payment pages hosted by GoCardless, and / or to have
 GoCardless send compliant, generic notification emails on your behalf.

 You can see our hosted payment pages and an example of the emails we send by
 testing out the payment flow here.

 Local Bank Details

Creditor bank accounts,
customer bank accounts, and
customer bank account tokens can all be
created with local or international bank details. This section lists the different local
bank detail formats, and how they should be used with the GoCardless API.

 IBAN

When supplying an IBAN (international bank account number), the country_code field is
optional, but must match the country code of the IBAN (its first two characters) if
supplied.
If currency is not supplied we use the default currency based on the
provided or derived country_code. For example if the IBAN of an account
begins with GB but you want to collect Euros from the account using SEPA you
must specify the currency as EUR.

 IBANs are not supported for Australian bank accounts denominated in AUD and Swedish bank accounts denominated in SEK - you must supply local bank details.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "iban": "GB60 BARC 2000 0055 7799 11",
 ...
 }
}

 UK

For the UK, a 6-8 digit account_number and a 6 digit branch_code (sort code)
should be supplied.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "GB",
 "account_number": "55779911",
 "branch_code": "200000",
 ...
 }
}

 Australia

For Australia, an account_number and a branch_code (BSB number)
should be supplied. The account number is 5-9 digits, and the BSB number is 6 digits.

 IBANs are not supported for Australian bank accounts denominated in AUD - you must supply local bank details.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "AU",
 "account_number": "0123456789",
 "branch_code": "012345",
 ...
 }
}

 Austria

For Austria, an account_number (Kontonummer, Kto.) and bank_code (Bankleitzahl, BLZ)
should be supplied. The Kontonummer is 4-11 digits, and the Bankleitzahl is 5 digits.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "AT",
 "account_number": "234573201",
 "bank_code": "19043",
 ...
 }
}

 Belgium

For Belgium, only an account_number (Rekeningnummer/Numéro de compte) should be
supplied. The first three digits of this are a bank identifier, but are usually considered
part of the account number.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "BE",
 "account_number": "539-0075470-34",
 ...
 }
}

 Canada

For Canada, use a 2-3 digit bank_code (Financial Institution number), a 5
digit branch_code (Branch Transit number) and a 7-12 digit account_number.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "CA",
 "account_number": "1234567",
 "bank_code": "0003",
 "branch_code": "00006",
 ...
 }
}

 Cyprus

For Cyprus, a 3 digit bank_code (Kodikos Trapezas) and 7-16 digit account_number
(Arithmos Logariasmou) must be supplied, and a 5 digit branch_code (Kodikos Katastimatos)
can also be supplied.

The bank and branch code (Kodikos Trapezas and Kodikos Katastimatos) are frequently
supplied together as a single number, so it is also allowed to supply just an 8-digit
bank_code containing both the Kodikos Trapezas and the Kodikos Katastimatos.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "CY",
 "account_number": "1200527600",
 "bank_code": "002",
 "branch_code": "00128",
 ...
 }
}

 Denmark

For Denmark, a 2-4 digit bank_code (registreringsnummer) and a 9-10 digit
account_number (kontonummer) must be supplied.

Alternatively, the bank code and branch code can be provided as part of the
account_number field separated by a - (e.g. 123-123-1234), or a
13-14-digit account_number (including bank code) can be provided where values
are separated by a space (e.g. 1234 1234567890).

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "DK",
 "account_number": "3179681",
 "bank_code": "345",
 ...
 }
}

 Estonia

All local account numbers were replaced with IBANs in February 2014, however some payers
may prefer using the old account numbers. These are up to 14 digits, and can be supplied
as the account_number.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "EE",
 "account_number": "221020145685",
 ...
 }
}

 Finland

As of August 2014, Finnish banks are required to use IBANs rather than the old “tilinumeron
rakenne”, however GoCardless still supports the older format. This is a 6 digit bank_code,
and up to 8 digit account_number.

The Åland Islands use the same banking details as Finland, and can be submitted
using their ISO 3166-1 country code AX.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "FI",
 "account_number": "456",
 "bank_code": "500015",
 ...
 }
}

 France

There are four parts to French bank details:

	Code banque: 5 digit bank_code

	Code guichet: 5 digit branch_code

	Numéro de compte: up to 11 digit account number
	Clé RIB: 2 check digits

The check digits are frequently written at the end of the account number, and this is how
they should be included in the account_number field.

French DOMs and TOMs use the same details as above, and can be submitted using
their ISO 3166-1 country codes:

	French Guiana: GF

	Guadeloupe: GP

	Martinique: MQ

	Mayotte: YT

	Réunion: RE

	Saint Barthélemy: BL

	Saint Martin (French part): MF

	Saint Pierre and Miquelon: PM

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "FR",
 "account_number": "0500013M026 06",
 "bank_code": "20041",
 "branch_code": "01005",
 ...
 }
}

 Germany

For Germany, a 1-10 digit account_number (Kontonummer) and 8 digit bank_code
(Bankleitzahl) are required.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "DE",
 "account_number": "532013000",
 "bank_code": "37040044",
 ...
 }
}

 Greece

In Greece most customers know their IBANs, but GoCardless also supports passing
full local bank details. If local bank details are provided, a 3 digit bank_code
(Kodikos Trapezas), a 5 digit branch_code (Kodikos Katastimatos), and a 16 digit
account_number (Arithmos Logariasmou) must be supplied.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "GR",
 "account_number": "0000000012300695",
 "bank_code": "011",
 "branch_code": "0125",
 ...
 }
}

 Ireland

Ireland uses a 6-digit branch_code (sort code), and 6-8 digit account_number.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "IE",
 "account_number": "29823529",
 "branch_code": "90-21-27",
 ...
 }
}

 Italy

Most Italian payers will be familiar with the IBAN format in addition to the local format,
and more correctness checks can be applied to the IBAN, so it is recommended to ask users
to input their IBAN rather than local details. However, it is possible to use:

	Codice ABI: 5 digit bank_code

	CAB: 5 digit branch_code

	Numero di conto: up to 12 digit account_number

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "IT",
 "account_number": "123456",
 "bank_code": "05428",
 "branch_code": "11101",
 ...
 }
}

 Latvia

Latvia replaced bank details with IBANs in 2005, so most Latvian payers are unlikely to
know their bank code and account number, however GoCardless continues to accept them. The
bank_code should be 4 characters, and the account_number should be 13 digits.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "LV",
 "account_number": "0000435195001",
 "bank_code": "LACB",
 ...
 }
}

 Lithuania

Lithuania replaced bank details with IBANs in 2004, so most Lithuanian payers are unlikely
to know their bank code and account number, however GoCardless continues to accept them.
The bank_code should be 5 digits, and the account_number should be 11 digits.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "LT",
 "account_number": "11101001000",
 "bank_code": "10000",
 ...
 }
}

 Luxembourg

Luxembourg replaced bank details with IBANs in 2002, so most Luxembourgian payers are
unlikely to know their bank code and account number, however GoCardless continues to
accept them. The bank_code should be 3 digits, and the account_number should be 13
digits.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "LU",
 "account_number": "9400644750000",
 "bank_code": "001",
 ...
 }
}

 Malta

Malta uses a 5-digit branch_code (sort code) and an up to 18-digit
account_number (numru tal‑kont bankarju).

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "MT",
 "account_number": "9027293051",
 "branch_code": "44093",
 ...
 }
}

 Monaco

Monaco uses the same local bank details as France. That is:

	Code banque: 5 digit bank_code

	Code guichet: 5 digit branch_code

	Numéro de compte: up to 11 digit account number
	Clé RIB: 2 check digits

The check digits are frequently written at the end of the account number, and this is how
they should be included in the account_number field.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "MC",
 "account_number": "0500013M026 06",
 "bank_code": "20041",
 "branch_code": "01005",
 ...
 }
}

 Netherlands

The Netherlands have replaced local bank details with IBANs, so most Dutch
payers are unlikely to know their bank code and Rekeningnummer, however
GoCardless continues to accept them. The bank_code should be 4 characters, and
the account_number (Rekeningnummer) up to 10 digits.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "NL",
 "account_number": "0417164300",
 "bank_code": "ABNA",
 ...
 }
}

 New Zealand

New Zealand bank details have 4 components:

	Bank Number: 2 digit bank_code

	Branch Number: 4 digit branch_code

	Account Number: 7 digits
	Account Suffix: 2/3 digits

The account number and account suffix should be concatenated with a - for the account_number field.

 IBANs are not supported for New Zealand bank accounts denominated in NZD - you must supply local bank details.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "NZ",
 "account_number": "0123456-89",
 "branch_code": "0123",
 "bank_code": "01",
 ...
 }
}

 Portugal

Portuguese bank details have 4 components:

	Código de Banco: 4 digit bank_code

	Código de Balcão: 4 digit branch_code

	Número de conta: 11 digit account number
	Dígitos de controlo: 2 check digits

The account number and check digits should be concatenated for the account_number field.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "PT",
 "account_number": "1234567890154 50",
 "bank_code": "0002",
 "branch_code": "0123",
 ...
 }
}

 San Marino

San Marino uses the same bank details formats as Italy. As with Italy, payers will be
familiar with the IBAN format in addition to the local format, and more correctness checks
can be applied to the IBAN, so it is recommended to ask users to input their IBAN rather
than local details. However, it is possible to use:

	Codice ABI: 5 digit bank_code

	CAB: 5 digit branch_code

	Numero di conto: up to 12 digit account_number

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "SM",
 "account_number": "123456",
 "bank_code": "05428",
 "branch_code": "11101",
 ...
 }
}

 Slovak Republic

There are three parts to Slovak bank details:

	Předčíslí: up to 6 digit account number prefix
	Číslo účtu: up to 8 digit account number
	Kód banky: 4 digit bank code

These are often written as pppppp-aaaaaaaaaa/bbbb. When creating a bank account using
Slovak bank details, the předčíslí and číslo účtu should be concatenated for the
account_number field, and the kód banky should be used for the bank_code field.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "SK",
 "account_number": "198742637541",
 "bank_code": "1200",
 ...
 }
}

 Slovenia

Slovenia uses a 5 digit bank_code and up to 10 digit account_number.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "SI",
 "account_number": "123438",
 "bank_code": "19100",
 ...
 }
}

 Spain

There are four parts to Spanish bank details, the 4 digit código de entidad (bank code),
4 digit código de oficina (branch code), 2 dígitos de control (check digits), and 10 digit
número de cuenta.

These can either be supplied as separate bank_code, branch_code, and account_number
(with the check digits at the start of the account number), or all in the account_number
field. In the latter case, this is known locally as the Código Cuenta Cliente.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "ES",
 "account_number": "45 0200051332",
 "bank_code": "2100",
 "branch_code": "0418",
 ...
 }
}

 Sweden

Sweden uses a 4- or 5-digit branch_code (clearingnummer), and up to 10-digit account_number
(kontonummer).

 IBANs are not supported for Swedish bank accounts denominated in SEK - you must supply local bank details.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "SE",
 "account_number": "1234512",
 "branch_code": "5527"
 ...
 }
}

 United States

United States uses a 9-digit bank_code (routing number), and up to 17-digit account_number
(account number). Additionally, account_type must be provided (either checking or savings).

 IBANs are not supported for American bank accounts denominated in USD - you must supply local bank details.

 HTTP

 HTTP
 {
 "customer_bank_accounts": {
 "country_code": "US",
 "account_number": "2715500356",
 "bank_code": "026073150",
 "account_type": "checking",
 ...
 }
}

 Character Sets

Different schemes allow different sets of characters to be used in
payment and mandate references. All schemes allow alphanumeric characters (A-Z, 0-9) and some also allow a selection of special characters (subject to change). Any references provided to us containing characters not permitted by the scheme will cause an error, we will include the characters that caused the error in the message.

The exact way that references are displayed also varies by bank (e.g. some truncate references, some do not show them at all). GoCardless will always format payment and mandate references to appear as accurately as possible for the given bank and scheme.

 Public Certificate Policy

GoCardless forces HTTPS for all services, using TLS. Our client libraries also use TLS
and verify the certificates to ensure security.

Currently our certificates are provided by Google (Google GTS Root R1 CA).
This can be verified using the openssl library:

$ openssl s_client -connect api.gocardless.com:443 <<< ""
CONNECTED(00000005)
depth=2 C = US, O = Google Trust Services LLC, CN = GTS Root R1
verify return:1
depth=1 C = US, O = Google Trust Services LLC, CN = GTS CA 1P5
verify return:1
depth=0 CN = api.gocardless.com
verify return:1

Certificate chain
 0 s:CN = api.gocardless.com
 i:C = US, O = Google Trust Services LLC, CN = GTS CA 1P5
 a:PKEY: rsaEncryption, 2048 (bit); sigalg: RSA-SHA256
 v:NotBefore: Jun 15 13:55:41 2023 GMT; NotAfter: Sep 13 13:55:40 2023 GMT
 1 s:C = US, O = Google Trust Services LLC, CN = GTS CA 1P5
 i:C = US, O = Google Trust Services LLC, CN = GTS Root R1
 a:PKEY: rsaEncryption, 2048 (bit); sigalg: RSA-SHA256
 v:NotBefore: Aug 13 00:00:42 2020 GMT; NotAfter: Sep 30 00:00:42 2027 GMT
 2 s:C = US, O = Google Trust Services LLC, CN = GTS Root R1
 i:C = BE, O = GlobalSign nv-sa, OU = Root CA, CN = GlobalSign Root CA
 a:PKEY: rsaEncryption, 4096 (bit); sigalg: RSA-SHA256
 v:NotBefore: Jun 19 00:00:42 2020 GMT; NotAfter: Jan 28 00:00:42 2028 GMT

Our client libraries currently don’t offer any form of
certificate pinning, and we don’t intend to support this feature in the future.
We reserve the right to change our Certificate Authority (CA), which
will break your integration if you’ve implemented certificate pinning..

For any future changes to the API certificate authority, we will place a
scheduled maintenance notice on our status page, with at least 2
weeks advance warning. If your integration does depend on a specific TLS chain of
trust, then we advise that you subscribe to updates on this page.

 Approving our IP Addresses

Please be aware that adding our IPv4 addresses to an approved list is not a supported scenario for using our API. The IP address may change as part of our normal operations and should not be relied upon to remain static. This is inline with best practices for highly-available services.

As a result we recommend that you do not add our IPv4 addresses to your approved lists in the future.

 Approving our IP addresses for receiving webhooks is still a valid practice.
Please visit the webhooks
appendix
for more details.

 Alternative to IP approved lists

We recommend relying on the stronger security provided by Transport Layer Security (TLS). This should be used to validate our identity whilst communicating with our API as part of the normal checking of certificates. Please note that certificate revocation should also be checked for all parts of the certificate chain in the certificate we provide you.

For more information on how to implement this change, or for help with any questions, please contact our team on api@gocardless.com.

Tax Rates

GoCardless has been instructed by the relevant authorities to charge tax on its fees.

GoCardless currently applies tax to transaction and surcharge fees for merchants operating in the UK and France.

Who does this impact?

 At this time, this change will impact any creditors who have a country_code of “GB” or “FR”. It is possible that we may have to start charging VAT (or equivalent) in other areas that we operate in the future.

 In the onboarding flow we request that creditor to select the appropriate jurisdiction for their country, which we use to apply the correct tax to the merchant.

Best practices for integrating

For best practices see our partner guides for handling tax.

Definitions of jurisdiction

jurisdiction for countries or overseas territories will be an ISO 3166-1 alpha-2 code, e.g FR for France & GP for Guadeloupe

For areas with unique tax rates that do not have ISO-3166-1 codes, we will use the ISO 3166-2 subdivision codes for that country. e.g Corsica is FR-COR.

Tax Tables

Tax for British territories

	id	jurisdiction	type	description	percentage
	GB_VAT_1	GB	VAT	VAT for Mainland Great Britain	20
	JE_GST_1	JE	GST	GST for Jersey	0
	GI_VAT_1	GI	VAT	VAT for Gibraltar	0
	GG_VAT_1	GG	VAT	VAT for Guernsey	0

Tax for French territories

	id	jurisdiction	type	description	percentage
	FR_VAT_1	FR	VAT	VAT for Mainland France	20
	GP_VAT_1	GP	VAT	VAT for Guadeloupe	8.5
	MQ_VAT_1	MQ	VAT	VAT for Martinique	8.5
	RE_VAT_1	RE	VAT	VAT for Reunion Island	8.5
	FR-COR_VAT_1	FR-COR	VAT	VAT for Corsica	20

 The ids for tax rates are shared between the environments.

